首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome translocations have been known to affect disjunction of chromosomes unrelated to the translocation in the mouse and in Drosophila. However, in humans, an interchromosomal effect in chromosome translocations has not been demonstrated. The availability of techniques that allow the study of nondisjunction in sperm cells has permitted us to evaluate the possibility of an interchromosomal effect in male translocation heterozygotes. In this study, multicolor fluorescence in situ hybridization was used to determine levels of disomy for the clinically relevant chromosomes X, Y, 13, 18, and 21 in 332,858 spermatozoa from nine reciprocal translocation heterozygotes and nine controls with normal karyotypes. The specific translocations studied were as follows: t(10;12)(p26.1;p13.3), t(2;18)(p21;q11.2), t(3;19)(p25;q12), t(5;8)(q33;q13), t(11;22)(q23;q11), t(3;4)(p25;p16), t(8;9) (q24.2;q32), t(10;18)(q24.1;p11.2), and t(4;10)(q33;p12.2). Comparisons of disomy rates between carriers and controls were performed by using the Mann-Whitney test. Our results showed that the rates of sex chromosome hyperhaploidy were similar in controls (0.21%) and in translocation carriers (0.19%). Similarly, the frequencies of disomy for chromosomes 13, 18, and 21 did not differ significantly between controls and carriers (0.05% versus 0.08%, 0.07% versus 0.03%, and 0.14% versus 0.20%, respectively). Sex chromosome nondisjunction was more common than nondisjunction of chromosomes 13 and 18 both in controls (P=0.0057) and in carriers (P=0.0008). Similarly, the rates of chromosome disomy for chromosome 21 were higher than those for chromosomes 13 and 18 in both controls (P=0.0031) and translocation carriers (P=0.0057). In our study, the excess of chromosome 21 disomy versus disomy of the other autosomes was more pronounced in carriers than in controls. Thus, although the difference of disomy 21 between controls and carriers was not statistically significant, it is worthy of attention.  相似文献   

2.
The effects of cryopreservation on the frequency and type of chromosome abnormalities in human sperm have been investigated for the first time. With a technique which enables direct visualization of human sperm chromosomes following in vitro penetration of hamster oocytes, sperm samples from 13 normal men were examined before and after being frozen in liquid nitrogen. The overall abnormality frequencies of 17.8% for fresh semen and 13.4% for previously frozen semen were not significantly different (chi 2(1) df = 3.04, p = 0.08). When specific abnormality types were analyzed, only the category of hypohaploidy was significantly different (chi 2(1) df = 6.75, p = 0.009) before (7.5%) and after (3.4%) freezing. Hypohaploidy was significantly higher than hyperhaploidy both prefreeze and postfreeze, and chromosome loss was random. Because the observed excess of hypohaploid cells may be attributable to technical artifact, the aneuploidy levels were estimated by doubling the number of hyperhaploid cells. Neither the adjusted numerical abnormality frequencies (1% prefreeze vs. 0% postfreeze) nor the overall abnormality frequencies (11.8% prefreeze vs. 10.4% postfreeze) were significantly different. The types and distributions of karyotypically abnormal sperm complements (numerical, structural, or combined) observed before and after freezing were not different. Interdonor variability in sperm chromosome abnormality frequencies and a possible donor-dependent response to cryopreservation were suggested by the data. The sex ratios were not affected by cryopreservation and did not differ significantly from the theoretical 50%. It is concluded that cryopreservation does not affect the type or frequencies of chromosome abnormalities or alter the sex ratio in human sperm.  相似文献   

3.
Analysis of sperm karyotypes and two-color fluorescent in situ hybridization (FISH) on sperm nuclei were carried out in a man heterozygous for the pericentric inversion inv(9)(p11q13). Sperm chromosome complements were obtained after in vitro fusion of zona-free hamster oocytes and donor sperm. A total of 314 sperm complements was analyzed: 153 (48.7%) carried the inverted chromosome 9 and 161 (51.3%) carried the normal one. None of the sperm complements contained a recombinant chromosome 9, suggesting that no chiasmata were formed in the heterochromatic region. The frequency of structural chromosome aberrations unrelated to the inversion (8.3%) and the frequency of conservative aneuploidy (3.2%) were within the limits observed in our control donors. The proportions of X-bearing (47.3%) and Y-bearing sperm (52.7%) were not significantly different from the expected 1:1 ratio. The percentage of disomy for chromosome 21 was analyzed by two-color FISH in 10 336 sperm nuclei. The disomy rate for chromosome 21 (0.30%) was not significantly different from that found in our controls. These results suggest that the risk for this man of producing chromosomally abnormal offspring or spontaneous abortions was not increased, and do not support the existence of an interchromosomal effect for chromosome 21. Received: 28 October 1996  相似文献   

4.
Meiotic segregation products were studied in sperm from a man who was heterozygous for a reciprocal translocation, t(9;10)(q34;q11). A total of 171 sperm chromosome complements were studied by in vitro fertilization of hamster eggs. All possible 2:2 and 3:1 meiotic segregations were observed with the following frequencies: alternate, 41%; adjacent-1, 48%; adjacent-2, 5%; 3:1, 6%. Within alternate segregations, the number of normal sperm (35) was not significantly different from the number of sperm carrying a balanced form of the translocation (33), as expected. The proportion of sperm with an unbalanced form of the translocation was 60%. There was no evidence for an interchromosomal effect, since the frequencies of numerical (8%) and structural (15%) chromosomal abnormalities (both unrelated to the translocation) were within the normal range of control donors. The literature on a total of 10 translocation heterozygotes studied by sperm chromosome analysis was reviewed.  相似文献   

5.
Human sperm chromosomes were studied in a man heterozygous for a pericentric inversion of chromosome 3(p25q21). The pronuclear chromosomes were analyzed after in vitro penetration of golden hamster eggs. A total of 144 sperm were examined: 69.2% were chromosomally balanced and 30.8% were recombinant. Of the balanced complements, the proportion with a normal chromosome 3 (37.6%) was approximately equal to the proportion with an inverted 3 (31.6%). Of the recombinant complements, the proportion of sperm with a duplication q/deletion p (17.3%) was approximately equal to the reciprocal event of duplication p/deletion q (13.5%). The recombinant chromosome 3 with a duplication q and deletion p has been observed in several abnormal children, but the duplication p/deletion q has never been reported. My results demonstrate that both recombinant chromosomes are produced as expected from an unequal number of crossovers within an inversion loop. In all likelihood the duplication p/deletion q chromosome is an early embryonic lethal because of the amount of genetic material deleted. The proportions of X-bearing (48.9%) and Y-bearing sperm (51.1%) were not significantly different from the expected 1:1 ratio. There was no evidence for an interchromosomal effect. Of the three inversions studied by human sperm chromosome analysis, recombinant chromosomes have been observed only in this case.  相似文献   

6.
Chromosomal aberrations in human sperm and lymphocytes were compared before and after in vivo radiation treatment of 13 cancer patients. The times of analyses after radiotherapy (RT) were 1, 3, 12, 24, 36, 48 and 60 months. The median total radiation dose was 30 Gy and the testicular dose varied from 0.4 to 5.0 Gy. Human sperm chromosome complements were analysed after fusion with golden hamster eggs. There were no abnormalities in sperm or lymphocytes before RT. Following RT there was an increase in the frequency of numerical and structural chromosomal abnormalities in both lymphocytes and sperm. For structural abnormalities there were more rejoined lesions (dicentrics, rings) in lymphocytes and more unrejoined lesions (chromosome breaks, fragments) in sperm. After RT there was a dramatic increase in the frequency of chromosomal abnormalities in lymphocytes: at 1 mo. the frequency was 42%, at 3 mo. 25%, at 12 mo. 14%, at 24 mo. 11%, at 36 mo. 9%, at 48 mo. 7% and at 6 mo. 4%. Since the majority of men were azoospermic after RT, there is little data on sperm chromosome complements before the analyses performed at 24 mo. post-RT. At 24 mo. the frequency of abnormalities was 13%, followed by 21% at 36 mo., 12% at 48 mo. and 22% at 60 mo. Thus it appears that the frequency of lymphocyte chromosomal abnormalities had an initial marked increase after RT followed by a gradual decrease with time whereas the frequency of sperm chromosomal abnormalities was elevated when sperm production recovered and remained elevated from 24 to 60 mo. post-RT. This difference in the effect of time makes it very difficult to compare abnormality rates in lymphocytes and sperm and to use analysis of induced damage in somatic cells as surrogates for germ cells since the ratio between sperm and lymphocytes varied from 1:1 (at 24 mo. post-RT) to 5:1 (at 60 mo. post-RT).  相似文献   

7.
Honda H  Miharu N  Samura O  He H  Ohama K 《Human genetics》2000,106(2):188-193
Meiotic segregation of chromosomes 14 and 21 in sperm from a 14;21 Robertsonian translocation carrier was analyzed with dual-color FISH using two locus-specific DNA probes (Tel 14q and LSI 21). The frequency of normal or chromosomally balanced sperm, resulting from alternate segregation, was 88.42%. The frequency of unbalanced sperm, resulting from adjacent segregation, was 11.25%. These observed frequencies deviated significantly from the theoretical frequencies (33.33% and 66.67%, respectively) based on random chromosome segregation, with sperm resulting from alternate segregation being preferentially produced in the translocation carrier. With respect to the chromosomally unbalanced sperm, the frequency of 21q disomic sperm was 2.45%, which is in agreement with the frequencies of unbalanced fetuses or offspring at the time of amniocentesis or at term (0-4.3%) reported by others. Although the frequency of 14 or 21 nullisomic sperm should be theoretically equal to that of 14q or 21q disomic sperm in both the carrier and controls, the frequency of nullisomic sperm was significantly higher than that of disomic sperm in the carrier (P=0.0009 for chromosome 14, P<0.0001 for chromosome 21) but not in the controls (P=0.091 for chromosome 14, P=0.74 for chromosome 21). This evidence suggests the occurrence of maturation arrest during spermatogenesis of the carrier.  相似文献   

8.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

9.
Summary Full cytogenetic analysis of 27 different retinoblastoma tumors is presented. Gross aneuploidy of chromosome arms 6p and 1q were very common, being observed in 15/27 and 21/27 tumors, respectively. However, we found that chromosome 13 was rarely missing: only 3/27 had a detectable monosomy affecting 13q14. Monosomy of chromosome 13 by small deletion or rearrangement was also not observed in any of 12 retinoblastoma tumor lines analyzed detail at the 300–400 chromosome band level. A novel observation in retinoblastoma was the discovery of non-random translocations at three specific breakpoints, 14q32 (4/12), 17p12 (5/12), and 10q25 (3/12). Genomic rearrangements similar to those described involving C-myc in Burkitt lymphoma 14q+ cells could not be demonstrated in the four 14q+ retinoblastoma lines using molecular techniques, and a probe mapping to the site implicated to have an activating role in lymphoma. These data suggest that there is a target for rearrangement at 14q32 but it is not the same sequence used in some Burkitt lymphomas. Two other breakpoints (2p24 and 8q24) coincided with the mapped position of cellular oncogenes, but also failed to show a molecular rearrangement with the oncogene probes. The breakpoints, 10q25 and 17p12, are constitutional fragile sites which may predispose these regions to act as acceptors of translocations in malignant cells. One line had double minute chromosomes, and was the only one of 16 (6%) tested with the N-myc probe which had an amplification. Different tumors from single patients with multifocal heritable retinoblastoma showed independent karyotype evolution. Unilateral non-heritable tumors exhibited a high level of karyotype stability throughout both in vivo and in vitro growth. The various common patterns of aneuploidy and translocations probably confer an early selective advantage to malignant cells, rather than induce malignant transformation.  相似文献   

10.
Meiotic segregation patterns of carriers of Robertsonian translocations (RT) are important for assessing the risk of unbalanced forms. We investigated the ratio of sperm with t(21;21) to sperm with nullisomy for chromosome 21; the segregation of the t(21;21) along with sex chromosomes, and also interchromosomal effects on chromosome 10 by using three color fluorescence in situ hybridization (FISH) with telomere specific (Tel 21q) and centromere-specific alpha satellite probes for chromosomes X, Y, and 10. The percentage of cosegregation of t(21;21) with sex chromosomes (49.50%) and without sex chromosomes (46.98%) was not significant. There are no significant differences between the percentages of cosegregation of t(21;21) with chromosome X (23.36%) and with chromosome Y (26.16%). No evidence of an interchromosomal effect on chromosome 10 was detected, the percentage of chromosome 10 aneuploidy being similar to that in controls. In addition, the frequency of diploid sperm nuclei was not significantly higher in the carrier (0.32%) than in the controls (0.44%) (P > 0.05). The sex ratio was similar within the carrier and the controls and between the carrier and the control. Three color-FISH analysis, using different probe combinations, seems a rapid and accurate tool for direct analysis of meiotic segregation product.  相似文献   

11.
OBJECTIVE: Although information on the cytogenetic characteristics of meningioma tumors has accumulated progressively over the past few decades, information on the genetic heterogeneity of meningiomas is still scanty. The aim of the present study was to analyze by interphase fluorescence in situ hybridization (FISH) the incidence of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y in a group of 70 consecutive meningioma tumors. Another goal was to establish the potential associations among the altered chromosomes, as a way to assess both intertumoral and intratumoral heterogeneity. METHODS: For the purpose of the study, 70 patients diagnosed with meningioma were analyzed. Interphase FISH for the detection of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y was applied to fresh tumor samples from each of the patients studied. RESULTS: The overall incidence of numerical abnormalities was 76%. Chromosome Y in males and chromosome 22 in the whole series were the most common abnormalities (46% and 61%, respectively). Despite the finding that monosomy of chromosome 22/22q(-) deletions are the most frequent individual abnormality (53%), we have observed that chromosome gains are significantly more common than chromosome losses (60% versus 40%). Chromosome gains corresponded to abnormalities of chromosomes 1 (27%), 9 (25%), 10 (23%), 11 (22%), 14 (33%), 15 (22%), 17 (23%), and X in females (35%) and males (23%) whereas chromosome losses apart from chromosome 22 frequently involved chromosomes 14 (19%), X in males (23%), and Y in males (32%). Although an association was found among most gained chromosomes on one side and chromosome losses on the other side, different association patterns were observed. Furthermore, in the latter group, monosomy 22/22q(-) was associated with monosomy X in females and monosomy 14/14q(-) was associated with nulisomy Y in males. In addition, chromosome losses usually involved a large proportion of the tumor cells whereas chromosome gains were restricted to small tumor cell clones, including tetraploid cells. CONCLUSIONS: Our results show that meningiomas are genetically heterogeneous tumors that display different patterns of numerical chromosome changes, as assessed by interphase FISH.  相似文献   

12.
We have analyzed 140 sperm chromosome complements from a subfertile man heterozygous for an inv(7)(p13;q36). Seventy-five percent of the chromosome complements were not recombinant: 37.9% contained the normal chromosome 7, and 37.1% contained the inverted chromosome 7. Twenty-five percent of the 140 were recombinant: 7.1% carried a recombinant chromosome 7 with a duplication p and deletion q, 17.1% carried a recombinant chromosome 7 with a duplication q and deletion p, and 0.7% carried both recombinant chromosomes. The frequency of structural chromosomal aberrations unrelated to the inversion was 11.4%, and the frequency of aneuploidy was 2.9%. Both frequencies were not significantly different from those in control donors. Two sperm complements with a second independent, contiguous inversion involving one of the original breakpoints (q36) were observed (1.4%). The risk of producing chromosomally abnormal offspring or spontaneous abortions would be 34.3%. The proportion of X-bearing and Y-bearing sperm was 46.8% and 53.2%, respectively, not significantly different from the expected 1:1 ratio.  相似文献   

13.
Transmitted de novo structural chromosomal abnormalities, the majority of which are paternally derived, can lead to abnormal reproductive outcomes as well as genetic diseases in offspring. We developed and validated a new multicolor FISH procedure (sperm ACM, which utilizes DNA probes specific for the alpha [1cen], classical, [1q12], and midi [1p36.3] satellites of chromosome 1) which utilizes DNA probes specific for three regions of chromosome 1 to detect human sperm that carry numerical abnormalities plus two categories of structural aberrations: (1) duplications and deletions of 1pter and 1cen, and (2) chromosomal breaks within the 1cen-1q12 region. In healthy men, the average frequencies of sperm with duplications and deletions were (a) 4.5 +/- 0.5 and 4.1 +/- 1.3 per 10(4) involving 1pter and (b) 0.9 +/- 0.4 and 0.8 +/- 0.3 per 10(4) involving 1cen, respectively. The frequency of sperm exhibiting breaks within the 1cen-1q12 region was 14.1 +/- 1.2 per 10(4). Structural aberrations accounted for 71% of the abnormalities detected by sperm ACM, which was significantly higher than numerical abnormalities (P=2x10-8). Our findings also suggest that, for healthy men, (a) sperm carrying postmeiotic chromosomal breaks appear to be more prevalent than those carrying products of premeiotic or meiotic breakage or rearrangements, (b) the high frequency of chromosome breaks measured after "fertilization" by the hamster-egg cytogenetic method already appear to be present and detectable within human sperm by FISH, and (c) there are nonrandom and donor-specific distributions of breakpoint locations within 1q12 in sperm. FISH facilitates the analysis of much larger numbers of sperm than was possible when the hamster-egg method was used. Therefore, FISH-based procedures for simultaneously detecting chromosomal breaks, rearrangements, and numerical abnormalities in sperm may have widespread applications in human genetics, genetic toxicology, and reproductive medicine.  相似文献   

14.
Summary Chromosomal analysis of 1000 spermatozoa from 33 normal men was performed using in vitro fertilization of zonafree golden hamster eggs. The frequency of abnormal sperm complements was 8.5%: 5.2% were aneuploid and 3.3% had a structural chromosome abnormality. The frequencies of hyperhaploid (2.4%) and hypohaploid (2.7%) sperm complements were not significantly different and all chromosome groups were represented among the aneuploid complements. The majority (22/33) of structurally abnormal complements had a chromosome break. The percentages of X and Y-bearing sperm were 53.9% and 46.1%, which is significantly different from the expected one to one ratio.  相似文献   

15.
In a series of 121 consecutive patients with a myelodysplastic syndrome (MDS), studied in two laboratories, of which 87 (71.9%) had abnormal karyotypes, twelve had a structural abnormality of the long arm of chromosome 11 (13.8%). There were six deletions, one ring chromosome and five reciprocal translocations, all involving a chromosome band 11q23. Of these twelve patients, five had a refractory anemia (RA) and seven a refractory anemia with excess of blasts (RAEB). RA was associated more frequently with 11q deletions as the sole abnormality, while translocations or multiple chromosome abnormalities were commonly associated with RAEB. The study shows that the 11q aberrations represent frequent structural chromosome rearrangements in MDS.  相似文献   

16.
Summary Meiotic and sperm chromosomes were studied in a man heterozygous for a reciprocal translocation t(1;2)(q32; q36). Forty-five meiotic metaphase I cells were obtained from semen samples: 86.6% were 22,XY,IV and 13.3% had synaptic anomalies that affected all or some of the bivalents. The quadrivalents observed had a ring configuration (92.3%) or a chain configuration (7.7%). A total of 105 sperm chromosome complements were analyzed: 41% resulted from an alternate segregation, and the percentage of unbalanced sperm was 59%; most of them (71%) resulted from an adjacent 1 segregation. The frequency of anomalies unrelated to the translocation (5.7% numerical and 14.1% structural anomalies) were within the normal range for control donors. There was a good correspondence between the percentage of cells with a ring IV (92.3%) and the proportion of 2:2 segregations (88.6%) and between the percentage of chain IV (7.7%) and the incidence of 3:1 segregations (11.4%).  相似文献   

17.
Chromosomes of human sperm: Variability among normal individuals   总被引:13,自引:5,他引:8  
Summary The chromosomal constitution of 2468 human sperm cells been investigated by fusion of human sperm with hamster eggs. The overall frequency of cells with structural aberrations was 7.7%, ranging from 1.9% to 15.8%, and varying significantly among individuals. The highest frequency occurred in sperm from the oldest donor (49 years), who also had had a vasectomy reversal three years prior to sampling. The overall aneuploidy frequency was 1.7%, ranging from 0.6% to 3.1%. In nine out of ten donors from whom blood samples were available the frequency of sperm cells with structural aberrations was higher than that for lymphocytes. Two previously reported donors (Brandriff et al. 1984) were resampled after an interval of 14 and 16 months respectively, and were each found to have similar frequencies of sperm chromosome abnormalities at both sampling times. A father-son pair included in the study had several chromosome breakpoints in common, although no more frequently than unrelated individuals.  相似文献   

18.
A ring chromosome replacing a normal chromosome could involve variable structural rearrangements and mitotic instability. However, most previously reported cases lacked further genomic characterization. High-resolution oligonucleotide array comparative genomic hybridization with single-nucleotide polymorphism typing (aCGH+SNP) was used to study 2 unrelated cases with a ring chromosome 21. Case 1 had severe myopia, hypotonia, joint hypermobility, speech delay, and dysmorphic features. aCGH detected a 1.275-Mb duplication of 21q22.12-q22.13 and a 6.731-Mb distal deletion at 21q22.2. Case 2 showed severe growth and developmental retardations, intractable seizures, and dysmorphic features. aCGH revealed a contiguous pattern of a 3.612- Mb deletion of 21q22.12-q22.2, a 4.568-Mb duplication of 21q22.2-q22.3, and a 2.243-Mb distal deletion at 21q22.3. Mitotic instability was noted in 13, 30, and 76% of in vitro cultured metaphase cells, interphase cells, and leukocyte DNA, respectively. The different phenotypes of these 2 cases are likely associated with the unique genomic structure and distinct mitotic behavior of their ring chromosome 21. These 2 cases represent a subtype of ring chromosome 21 probably involving somatic dicentric ring breakage and reunion. A cytogenomic approach is proposed for characterizing the genomic structure and mitotic instability of ring chromosome abnormalities.  相似文献   

19.
The sperm products of two male carriers of reciprocal translocations were studied by fluorescence in situ hybridization (FISH) using a combination of three probes for each translocation. One patient carried a t(2;18)(p21;q11.2), the other a t(8;9)(q24.2;q32). The probes selected included a centromeric marker for each chromosome involved in the translocation plus a third probe distal to the translocation breakpoint of one of the translocation chromosomes. This assay identifies alternate, adjacent 1, adjacent 2, and 3:1 types of meiotic products. It allows the identification of recombination events and also estimation of the frequency of diploidy. For the t(2;18), the frequency of normal and balanced sperm and of adjacent 1, adjacent 2, and 3:1 products was 43.6%, 29. 8%, 10.5%, and 12.8%, respectively. Similar segregation patterns had been reported for this donor by direct sperm karyotyping of sperm cells. For the t(8;9), the frequency of normal and balanced sperm and of adjacent 1, adjacent 2, and 3:1 products was 44.4%, 41%, 3.1%, and 9.4%, respectively. The frequency of complementary adjacent 1 products was statistically different in both the t(2;18) (P < 0. 0001) and the t(8;9) (P < 0.0001) carrier. When the number of adjacent 2 products with one translocation chromosome (regardless of normal or derivative) was compared to the number of adjacent 2 products with the second translocation chromosome (again, regardless of normal or derivative), no statistical difference was noted for either the t(2;18) (P = 0.32) or the t(8;9) (P = 0.69). Recombination events within the interstitial segment of chromosome 2 were statistically higher than those seen in chromosome 18 (P < 0. 0001), whereas in chromosomes 8 and 9, recombination in the interstitial segments was similar (P = 0.64). The rate of diploidy was similar in both the t(2;18) (0.5%) and the t(8;9) (0.6%). Thus, FISH provides chromosome information on the sperm products produced by translocation carriers, although it cannot provide an assessment of the full chromosome complement of the spermatozoon.  相似文献   

20.
Alzheimer disease (AD) is the most common cause of dementia. We conducted a genome screen of 103 patients with late-onset AD who were ascertained as part of the Genetic Research in Isolated Populations (GRIP) program that is conducted in a recently isolated population from the southwestern area of The Netherlands. All patients and their 170 closely related relatives were genotyped using 402 microsatellite markers. Extensive genealogy information was collected, which resulted in an extremely large and complex pedigree of 4,645 members. The pedigree was split into 35 subpedigrees, to reduce the computational burden of linkage analysis. Simulations aiming to evaluate the effect of pedigree splitting on false-positive probabilities showed that a LOD score of 3.64 corresponds to 5% genomewide type I error. Multipoint analysis revealed four significant and one suggestive linkage peaks. The strongest evidence of linkage was found for chromosome 1q21 (heterogeneity LOD [HLOD]=5.20 at marker D1S498). Approximately 30 cM upstream of this locus, we found another peak at 1q25 (HLOD=4.0 at marker D1S218). These two loci are in a previously established linkage region. We also confirmed the AD locus at 10q22-24 (HLOD=4.15 at marker D10S185). There was significant evidence of linkage of AD to chromosome 3q22-24 (HLOD=4.44 at marker D3S1569). For chromosome 11q24-25, there was suggestive evidence of linkage (HLOD=3.29 at marker D11S1320). We next tested for association between cognitive function and 4,173 single-nucleotide polymorphisms in the linked regions in an independent sample consisting of 197 individuals from the GRIP region. After adjusting for multiple testing, we were able to detect significant associations for cognitive function in four of five AD-linked regions, including the new region on chromosome 3q22-24 and regions 1q25, 10q22-24, and 11q25. With use of cognitive function as an endophenotype of AD, our study indicates the that the RGSL2, RALGPS2, and C1orf49 genes are the potential disease-causing genes at 1q25. Our analysis of chromosome 10q22-24 points to the HTR7, MPHOSPH1, and CYP2C cluster. This is the first genomewide screen that showed significant linkage to chromosome 3q23 markers. For this region, our analysis identified the NMNAT3 and CLSTN2 genes. Our findings confirm linkage to chromosome 11q25. We were unable to confirm SORL1; instead, our analysis points to the OPCML and HNT genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号