首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractionation of human serum proteins by gel filtration in Sephadex G-200 revealed two regions of collagenase inhibition which corresponded to α2-macroglobulin and a smaller serum component which eluted after α1-antitrypsin. The smaller collagenase inhibitor, having a molecular weight of 40,000 was separated from α1-antitrypsin by chromatography in Sephadex DEAE A.50. It was found to inhibit human collagenases derived from skin, rheumatoid synovium, gastric mucosa and granulocytes, but not the neutral proteases trypsin and papain. Purified preparations of α1-antitrypsin inhibiting trypsin and papain had no effect on the collagenase activities. The small collagenase inhibitor may have importance as a regulatory factor in the control of collagenase activity in vivo.  相似文献   

2.
A specific radioimmunoassay for human pancreatic anionic trypsin has been developed. The trypsin employed as radioiodinated tracer in the assay was inactivated with tosyl-L-lysine chloromethyl ketone in order to prevent binding of the tracer to the serum inhibitors α1-antitrypsin and α2-macroglobulin. A normal serum level of immunoreactive anionic trypsin of 5.45 ng/ml was determined. The results of experiments in which serum was fractionated by Sephadex G-200 gel filtration suggest that essentially all of the immunoreactive material in normal human serum is trypsinogen. This finding implies that a small fraction of the zymogens synthesized in the pancreas are released directly into the circulation.  相似文献   

3.
Human plasma alpha-1-proteinase inhibitor (α1-antitrypsin) has been re-isolated from its complex with porcine trypsin. The re-isolated protein (α1-PI*) was found to be non-inhibitory and 8,000 lower in molecular weight than the native inhibitor. Sequence analysis of α1-PI* showed that an amino terminal peptide had been lost, apparently the result of cleavage at a Lys-Thr bond. These data indicate that limited proteolysis is the first step in the inhibitory mechanism.  相似文献   

4.
Human plasma α1-antitrypsin (α1-AT), bovine trypsin, and α-chymotrypsin were labeled with either 14C or 3H by reductive methylation. The labeled inhibitor retained the capacity to inactivate and to form 1:1 molar complexes with either the unlabeled or labeled trypsin and α-chymotrypsin. After intravenous injection of reductively methylated α1-AT into rats, the labeled glycoprotein showed a circulating half-life of 12 h. When the N-acetylneuraminic acid residues were removed from the labeled α1-AT by neuraminidase in vitro, injection into rats of this product resulted in a rapid (half-life of about 5 min) and almost complete disappearance of the label from the circulation in 30 min. There was a concomitant accumulation of radioactivity in the liver of over 75% of the injected dose. The reductively methylated radioactively labeled trypsin and chymotrypsin experienced no loss of enzymatic activities. They showed the ability to form complexes in vivo with the two major plasma inhibitors, namely, α1-AT and α2-macroglobulin. High-voltage paper electrophoretic separation of acid hydrolysates of the labeled proteins revealed that ?-N-monomethyllysine and ?N,N-dimethyllysine are the only residues found to be radioactive.  相似文献   

5.
Human plasma α1-antitrypsin (α1-AT) was labeled with either 3H [3H-labeled NANA (N-acetyl-neuraminic acid)-7] residues in the carbohydrate moiety) or 14C (?-N-methyl-[14C]lysyl residues in the protein backbone) or with both isotopes in the corresponding residues. After intravenous injection into rats of the doubly labeled partially (50%) desialylated (methyl-[14C]·[3H]NANA-7)-α1-AT, the rates of disappearance from the plasma of both isotopes were very rapid and yielded essentially the same circulatory half-life of 5 min. The rapid disappearance of the doubly labeled glycoprotein from the plasma was accompanied by concomitant fast and equal accumulations of 14C and 3H in the liver which constituted about 70% of the administered dose 15 min after the injection. The asialo (methyl-[14C])-α1-AT·trypsin complex or methyl-[14C]-α1-AT·trypsin complex had a plasma survival time (45 min) that was intermediate between methyl-[14C]-α1-AT and its desialylated derivative. These complexes were removed from the plasma by the liver (45% of the injected dose 60 min after injection), although not as rapidly as asialo (methyl-[14C])-α1-AT. Blockade of the reticuloendothelial (Kupffer) cells by simultaneous injection of heat-denatured albumin inhibited the liver uptake of the inhibitor·trypsin complexes but not that of the uncomplexed asialo α1-AT. Radioactive ?-N,N-dimethyllysine, ?-N-monomethyllysine, methionine, choline, and betaine were separated and identified from the trichloro-acetic acid-soluble fraction of rat livers 25 min after injection of asialo (methyl-[14C])-α1-AT.  相似文献   

6.
A proteinase inhibitor resembling Bowman-Birk family inhibitors has been purified from the seeds of cultivar HA-3 of Dolichos lablab perpureus L. The protein was apparently homogeneous as judged by SDS–PAGE, PAGE, IEF, and immunodiffusion. The inhibitor had 12 mole% 1/2-cystine and a few aromatic amino acids, and lacks tryptophan. Field bean proteinase inhibitor (FBPI) exhibited a pI of 4.3 and an M r of 18,500 Da. CD spectral studies showed random coiled secondary structure. Conformational changes were detected in the FBPI–trypsin/chymotrypsin complexes by difference spectral studies. Apparent K a values of complexes of inhibitor with trypsin and chymotrypsin were 2.1 × 107 M?1 and 3.1 × 107 M?1, respectively. The binary and ternary complexes of FBPI with trypsin and chymotrypsin have been isolated indicating 1:1 stoichiometry with independent sites for cognate enzymes. Amino acid modification studies showed lysine and tyrosine at the reactive sites of FBPI for trypsin and chymotrypsin, respectively.  相似文献   

7.
125I-labelled α2-macroglobulin-typrin complex (125I-labelled α2-macroglobulin·trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37°C. The association of 0.5 μg/ml 125I-labelled α2-macroglobulin·trypsin was inhibited by unlabelled α2-macroglobulin·trypsin with a half-inhibition constant of about 8 μg/ml (11 nM). 125I-Labelled α2-macrioglubulin became cell-associated to a smaller extent (10–40% of that of α2-macroglobulin·trypsin) and the half-inhibition constant was about 35 μg/ml in adipocytes. The cell associated of 125I-labelled α-macroglobulin·trypsin was markedly inhibited by dansylcadaverin, bacitracin, omission of Ca2+ from the medium or pretreatment of the cell with trypsin. After incubation for 180 min more than 60% of the cell-associated 125-Ilabelled α2-macroglobulin·trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized marterial. 125I-Labelled α2-macroglobulin·trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 μg/ml 125I-labelled α2-macroglobulin was approx. 40% of that of 125I-labelled α2-macroglobulin·trypsin. Degradation of 125I-labelled α2-macroglobulin·trypsin was abolished by a high concentration (0.5 mg/ml) and α2-macroglobulin·trypsin. It is concluded that α2-macroglobulin·trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

8.
Pyranine is shown to be a convenient and sensitive probe for reporting pH values, pHi, at the interior of anionic and at the outer surface of cationic liposomes. It is well shielded from the phospholipid headgroups by water molecules in the interior of anionic liposomes, but it is bound to the surface of cationic liposomes. Hydrogen ion concentrations outside the liposomes, ‘bulk pH values’, pHo, were measured by a combination electrode. While pHi = pHo for neutral, pHi < pHo for anionic and pHi > pHo for cationic liposomes prepared in 5.0 · 10?3 M phosphate buffers. pKa values for the ionization of pyranine were 7.22 ± 0.04 and 6.00 ± 0.05 in water and at the external surface of cationic liposomes. The surface potential for cationic liposomes containing dipalmitoyl-d-α-phosphatidylcholine, cholesterol and octadecylamine in the molar ratio of 1.00 : 0.634 : 1.01, were calculated to be +72.2 mV. Proton permeabilities were measured for single and multicompartment anionic liposomes. Transfer of anionic liposomes prepared at a given pH to a solution of different pH resulted in a pH gradient if sodium phosphate or borate were used as buffers. In the presence of sodium acetate proton equilibration is promptly established.  相似文献   

9.
The interaction of the surfactant octyl glucoside (OG) with dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), and soy bean phosphatidylcholine (soy bean PC) was studied using high-sensitivity titration calorimetry. We determined the partition coefficient of OG between water and lipid bilayers and the transfer enthalpy of the surfactant by addition of lipid vesicles to OG monomers or vice versa. Comparison with the micellization enthalpy of the surfactant gives information on differences in the hydrophobic environment of OG in a liquid-crystalline bilayer or a micelle. The average partition coefficient P in mole fraction units for xe≈0.12–0.2 decreases slightly from 4152 at 27°C to 3479 at 70°C for DMPC and from 4260 to 3879 for soy bean PC, respectively. The transfer enthalpy ΔHT of OG into lipid vesicles is positive at 27°C and negative at 70°C. Its temperature dependence is larger for the incorporation of OG into DMPC than into soy bean PC vesicles. It is concluded that OG in DMPC vesicles is better shielded from water than in soy bean PC vesicles or in micelles. Titration calorimetry was also used to determine the phase boundaries of the coexistence region of mixed vesicles and mixed micelles in the systems OG/DMPC, OG/DPPC, OG/DSPC, and OG/soy bean PC vesicles at 70°C in the liquid-crystalline phase. DMPC and soy bean PC solubilization was also studied at 27°C to investigate the effect of temperature. The effective surfactant to lipid ratios at saturation, Resat, for all PCs studied are in the range between 1.33–1.72 and the ratios at complete solubilization, Resol, are between 1.79–3.06. At 70°C, the Resat values decrease with increasing chain length of the saturated PC. The ratios depend also slightly on temperature and the degree of unsaturation of the fatty acyl chains. For the OG/soy bean PC system, the coexistence range for mixed vesicles and mixed micelles is larger than for the corresponding PCs with saturated chains.  相似文献   

10.
The effect of entrapment of 86Rb+ and 22Na+ in multilamellar, negatively charged phospholipid liposomes on their clearance from the bloodstream and uptake into a variety of tissues in tumor-bearing mice was studied. Although differences were seen between the distribution of free and entrapped ions, these were smaller than might be expected from the uptake of liposomes containing labelled phospholipid. One problem detected was that addition of mouse serum caused a large increase in the efflux of 22Na+ from liposomes, suggesting that a large amount of the injected, trapped ions may have been free in the bloodstream within 1–2 hours. It is concluded that if liposomes are to be fully effective in increasing the uptake of entrapped substances into tissues, the type of liposome used as well as the nature of the entrapped substance are important variables.  相似文献   

11.
A stable immobilized preparation of alcohol dehydrogenase (ADH) (EC 1.1.1.1) was obtained by entrapment of ADH-containing Saccharomyces cerevisiae cells in polyacrylamide, polymerized by gamma-rays (100 kR). The permeability barrier for the substrate through the cell membrane was found to be eliminated on entrapment. The stability characteristics, pH-activity profile and other properties of the entrapped ADH are presented. A four-fold enhancement in Km for NAD+ was observed on entrapment, whereas Km for ethanol was not altered.  相似文献   

12.
Reactions of human plasma α1-antitrypsin (α1-AT) with reagents known to modify the lysyl residues [citraconic anhydride, acetic anhydride, 2,4,6-trinitrobenzenesulfonic acid (TNBS)] and arginyl residues [1,2-cyclohexanedione (CHD) and phenylglyoxal (PGO)] in proteins have been studied. Native and modified human plasma α1-AT preparations were tested for their inhibitory activities against trypsin and α-chymotrypsin. TNBS was utilized to modify and quantitate free amino groups (?-NH2 groups of lysine residues) in human plasma α1-AT. The number of lysine residues determined by the TNBS spectrophotometric procedure agreed well with that found by amino acid analyses. Both the trypsin-inhibitory and chymotrypsin-inhibitory activities of α1-AT were destroyed by modification with TNBS. CHD was employed to modify the arginyl residues of α1-AT. Neither the trypsin-inhibitory nor the chymotrypsin-inhibitory activity of α1-AT was affected by modification of its arginyl residues. Amino acid analyses of the CHD-treated α1AT revealed that only the arginine residues were modified. PGO was also utilized for the modification of the arginyl residues in α1-AT. Both the trypsininhibitory and chymotrypsin-inhibitory activities of α1-AT were destroyed after modification. However, amino acid analyses showed that not only the arginyl, but also the lysyl residues of the PGO-treated inhibitor were modified. The side reaction of PGO with the lysyl residues could explain the loss of inhibitory activities. Reaction of a α1-AT with citraconic anhydride resulted in an extensive modification of the amino groups accompanied by a 100% loss in inhibitory activity against both trypsin and α-chymotrypsin. Comparable results were observed when acetic anhydride was utilized as the acylating reagent. With the exception of the citraconylated α1AT, all of the other chemically modified α1-AT derivatives studied presently retained their immunological reactivities against antisera to native α1-AT. Regeneration of about 60% of the PGO-blocked arginyl residues in α1-AT did not lead to any recovery of the proteinase inhibitory activities. Full recovery of trypsin-inhibitory and immunological activities were achieved when about 50% of the citraconylated amino groups were deblocked. The CHD-treated α1-AT still retained the capacity to form complexes with both trypsin and chymotrypsin. On the other hand, the other chemically modified α1-AT derivatives have completely lost the ability to form complexes with the enzymes. Recovery of the ability to form complexes with the enzymes was, however, recovered when about 50% of the citraconylyl groups was removed from the α1-AT molecule. Based on these modification studies, it is concluded that α1-AT is a lysyl inhibitor type (i.e., the reactive site is Lys-X bond) and that the interaction of α1-AT with trypsin or chymotrypsin very likely involves or requires the same site as in the case of the soybean trypsin inhibitor (Kunitz).  相似文献   

13.
When entrapped into liposomes composed of phosphatidylcholine and other lipids, β-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) purified from Aspergillus oryzae could cleave the β-galactosidic bond of the terminal galactose of galactocerebroside and GM1-ganglioside (II3NeuAc-GgOse4Cer, galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide), while the free enzyme could not. The products of the hydrolysis of galactocerebroside were found to be β-galactose and ceramide, which was confirmed by using a fluorescent analog of galactocerebroside, 1-O-galactosyl-2-N-(1-dimethylaminonaphthalene-5-sulfonyl)-sphingosine, as substrate. The formation of GM2-ganglioside (II3NeuAc-GgOse3Cer, N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide) by the hydrolysis of GM1-ganglioside was also demonstrated. The lipid composition of the liposomes influenced the amount of the enzyme entrapped and the activity of the trapped enzyme. A large amount of the enzyme was entrapped into the liposomes composed of phosphatidylcholine-cholesterol-stearoylamine (molar ratio, 7:2:1). The enzyme trapped in the liposomes and that in those of phosphatidylcholine-cholesterol-sulfatide (molar ratio, 7:2:1) had higher activity on galactocerebroside and GM1-ganglioside than that in other liposomes. The activity of β-galactosidase trapped in liposomes was increased in the presence of detergent, while that of the free enzyme was not changed.By a similar procedure to introduce enzymes into hydrophobic environments, enzymes other than β-galactosidase might come to possess different substrate specificities.  相似文献   

14.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   

15.
Liposomes have been used to diagnose and treat cancer and, to a lesser extent, cardiovascular disease. We previously showed the uptake of anionic liposomes into the atheromas of Watanabe heritable hyperlipidemic rabbits within lipid pools. However, the cellular distribution of anionic liposomes in atherosclerotic plaque remains undescribed. In addition, how anionic liposomes are absorbed into atherosclerotic plaque is unclear. We investigated the uptake and distribution of anionic liposomes in atherosclerotic plaque in aortic tissues from apolipoprotein E-deficient (ApoE/) mice. To facilitate the tracking of liposomes, we used liposomes containing fluorescently labeled non-silencing small interfering RNA. Confocal microscopy analysis showed the uptake of anionic liposomes into atherosclerotic plaque and colocalization with macrophages. Transmission electron microscopy analysis revealed anionic liposomal accumulation in macrophages. To investigate how anionic liposomes cross the local endothelial barrier, we examined the role of clathrin-mediated endocytosis in human coronary artery endothelial cells (HCAECs) treated with or without the inflammatory cytokine tumor necrosis factor (TNF)-α. Pretreatment with amantadine, an inhibitor of clathrin-mediated endocytosis, significantly decreased liposomal uptake in HCAECs treated with or without TNF-α by 77% and 46%, respectively. Immunoblot analysis showed that endogenous clathrin expression was significantly increased in HCAECs stimulated with TNF-α but was inhibited by amantadine. These studies indicated that clathrin-mediated endocytosis is partly responsible for the uptake of liposomes by endothelial cells. Our results suggest that anionic liposomes target macrophage-rich areas of vulnerable plaque in ApoE/ mice; this finding may lead to the development of novel diagnostic and therapeutic strategies for treating vulnerable plaque in humans.  相似文献   

16.
We have investigated the permeability and entrapment characteristics of liposomes formed from a group of polymerisable phospholipids, containing diacetylenic groups in one or both of their acyl chains. Permeability was assessed by the release of an entrapped dye, 6-carboxyfluorescein. Diacetylenic phosphatidylcholine (PC) liposomes were found to exhibit a wide range of permeability properties, depending on: (i) the nature of the diacetylenic lipid, i.e., mixed-chain (mc) or identical-chain (id), (ii) the extent of polymerisation, (iii) vesicle size, and (iv) cholesterol content. Ultraviolet-initiated polymerisation affected a significant decrease in the permeability of C25idPC liposomes. The increase in permeability of liposomes formed from four other diacetylenic lipids (C25mcPC, C23idPC, C23PC and C20idPC) after polymerisation was attributed to disturbances in the packing of lipid molecules, and/or the limited ability of small unilamellar vesicles to accomodate long polymers. The C20idPC lipid is atypical, forming irregular monomeric and polymeric vesicles. The permeability of C25idPC liposomes was also assessed by the release of [3H]inulin. C25idPC liposomes exhibited low permeabilities to [3H]inulin in their monomeric and polymeric states. Incubation of C25idPC liposomes in human plasma caused a substantial increase in the permeability of monomeric vesicles to both carboxyfluorescein and [3H]inulin. The permeability of polymerised C25idPC liposomes, however, was unaffected in the presence of plasma, with vesicles retaining most of their entrapped [3H]inulin after 50 h. These findings demonstrate that polymeric C25idPC liposomes exhibit high resistance to the destructive actions of plasma components, such as high-density lipoproteins (HDLs). Polymeric C25 liposomes may have an application in drug delivery system.s  相似文献   

17.
18.
The occurrence of late-onset Alzheimer's disease has been related to the lipid homeostasis. We tested whether the membrane lipid environment affects the dynamics and cleavability of a model peptide corresponding to the amino acid sequence 684-726 of the amyloid precursor protein APP reconstituted in liposomes. Solid-state NMR with 2H-Ala713, which is located within the putative transmembrane domain, suggested that the peptide observes less rotational motion in egg phosphatidylcholine (PhC) membranes than in dimyristoyl-phosphatidylcholine (DMPC) bilayers above the main phase transition temperature Tc. The residue 15N-Ala692, which is in the vicinity of the α-cleavage site, i.e., Lys687, showed less motion after reconstitution in distearoyl-phosphatidylcholine liposomes <Tc than in PhC, DMPC, or sphingomyelin vesicles. In all tested liposomal systems the α-cleavage site was accessible for hydrolysis by trypsin. However, the catalytic rate constant was higher in the PhC and DMPC than in the sphingomyelin and distearoyl-phosphatidylcholine systems. In conclusion, the dynamics of APP(684-726) on the transmembrane level as well as the motion of the α-cleavage site and its hydrolysis by a model enzyme are dependent on the bilayer characteristics. This could be relevant for the processing of APP in vivo.  相似文献   

19.
The in vivo fate of subcutaneously injected neutral SUV liposomes in rats was examined using a membrane marker, 99mTc, and an aqueous marker, 125I-labelled poly(vinyl pyrrolidone). Liposomes with entrapped 125I-labelled poly(vinyl pyrrolidone) were labelled with 99mTc by the SnCl2 method [2]. 99mTc-radioactivity was localized several-fold more in the primary and secondary regional lymph nodes than 125I-labelled poly(vinyl pyrrolidone)-radioactivity. Similarly, 99mTc-radioactivity appeared and was subsequently cleared from the circulation much more rapidly than 125I-labelled poly(vinyl pyrrolidone). The gel chromatography of the lymph node homogenate revealed that 60–70% of 125I-labelled poly(vinyl pyrrolidone)-radioactivity was in the liposome fractions, whereas only 3% of 99mTc-radioactivity was co-eluted with liposomes. Thus, the two markers have different fates in the lymphatics, and the presence of all 99mTc-radioactivity does not represent the 60–70% of intact liposomes present in lymph nodes. Using the aqueous marker 125I-labelled poly(vinyl pyrrolidone), the lymphnode localization of positive, negative and neutral small unilamellar vesicles was studied, and it was found that 125I-radioactivity was more localized from negative liposomes than from positive liposomes, which in turn was more localized than that from neutral liposomes. Thus, these findings differ from those reported earlier [2], where the authors used 99mTc as a liposomal marker. In vitro studies showed that liposomes of preparations containing 20 mol% cholesterol became ‘leaky’ to low-molecular-weight drugs, for example, methotrexate (Mr 454) to a much greater extent than with a large-molecular-weight substance, 125I-labelled poly(vinyl pyrrolidone) (Mr 30 000–40 000), when incubated with rat lymph at 37°C. Using the two markers 99mTc and 125I-labelled poly(vinyl pyrrolidone) it was found that the localization of both radioactivities was reduced in lymph nodes draining λ-carrageenan-treated footpads. In conclusion, it is suggested that liposomes can be used for the delivery of drugs to diseased lymph nodes, and it would be worthwhile examining the possibilities of using alternative methods of labelling liposomes with 99mTc rather than using the SnCl2 technique [2], or using other radionuclides as markers for γ-scan imaging.  相似文献   

20.
The stability of the ?1-dehydrogenation system of Arthrobacter simplex immobilized in calcium alginate has been studied. A high stability was related to the ability of the cells to utilize a carbon source such as d-glucose or steroid. Inhibition of de novo protein synthesis reduced the ?1-dehydrogenase [3-oxosteroid: acceptor) ?1-oxidoreductase, EC 1.3.99.4] stability of the immobilized cells. The operational stability of immobilized cell preparations in the presence of the steroid degradation inhibitor, α,α-dipyridyl, could not be improved significantly by supplementing steroid substrate suspensions with either d-glucose or yeast extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号