首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Site-specific protein-DNA complexes vary greatly in structural properties and in the thermodynamic strategy for achieving an appropriate binding free energy. A better understanding of the structural and energetic engineering principles might lead to rational methods for modification or design of such proteins. RESULTS: A novel analysis of ten site-specific protein-DNA complexes reveals a striking correspondence between the degree of imposed DNA distortion and the thermodynamic parameters of each system. For complexes with relatively undistorted DNA, favorable enthalpy change drives unfavorable entropy change, whereas for complexes with highly distorted DNA, unfavorable DeltaH degrees is driven by favorable DeltaS degrees. We show for the first time that protein-DNA associations have isothermal enthalpy-entropy compensation, distinct from temperature-dependent compensation, so DeltaH degrees and DeltaS degrees do not vary independently. All complexes have favorable DeltaH degrees from direct protein-DNA recognition interactions and favorable DeltaS degrees from water release. Systems that strongly distort the DNA nevertheless have net unfavorable DeltaH degrees as the result of molecular strain, primarily associated with the base pair destacking. These systems have little coupled protein folding and the strained interface suffers less immobilization, so DeltaS degrees is net favorable. By contrast, systems with little DNA distortion have net favorable DeltaH degrees, which must be counterbalanced by net unfavorable DeltaS degrees, derived from loss of vibrational entropy (a result of isothermal enthalpy-entropy compensation) and from coupling between DNA binding and protein folding. CONCLUSIONS: Isothermal enthalpy-entropy compensation implies that a structurally optimal, unstrained fit is achieved only at the cost of entropically unfavorable immobilization, whereas an enthalpically weaker, strained interface entails smaller entropic penalties.  相似文献   

2.
Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding.  相似文献   

3.
The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.  相似文献   

4.
 Synthetic models of the myoglobin active site have provided much insight into factors that affect CO and O2 binding in the proteins. "Capped" and "pocket" metal porphyrin systems have been developed to probe how steric factors affect ligand binding and ultimately to elucidate important aspects of the mechanism of CO discrimination in the proteins. These model porphyrins are among the most thoroughly characterized systems to date. From the twenty-one known crystal structures, analysis of the types of distortion that occur upon ligand binding under the cap, including porphyrin doming and ruffling, lateral and horizontal movement of the cap, and bending and tilting of the Fe–C–O bond, provides an indication of how steric interactions will affect structure in Hb and Mb. The model porphyrin systems discussed range from those that discriminate against O2 binding compared to biological systems to those with similar CO and O2 binding strength to myoglobin, and also to those that bind both O2 and CO very weakly or not at all. The primary type of distortion observed upon CO binding is vertical or lateral movement of the cap and some ruffling of the porphyrin plane. Minimal bending or tilting of the M–C–O bond is observed, suggesting that the Fe–C–O bending that has been found from crystal structures of the hemoproteins is unlikely. Received, accepted: 23 May 1997  相似文献   

5.
The heme-AB binding energies (AB = CO, O2) in a wild-type myoglobin (Mb) and two mutants (H64L, V68N) of Mb have been investigated in detail with both DFT and dispersion-corrected DFT methods, where H64L and V68N represent two different, opposite situations. Several dispersion correction approaches were tested in the calculations. The effects of the local protein environment were accounted for by including the five nearest surrounding residues in the calculated systems. The specific role of histidine-64 in the distal pocket was examined in more detail in this study than in other studies in the literature. Although the present calculated results do not change the previous conclusion that the hydrogen bonding by the distal histidine-64 residue plays a major role in the O2/CO discrimination by Mb, more details about the interaction between the protein environment and the bound ligand have been revealed in this study by comparing the binding energies of AB to a porphyrin and the various myoglobins. The changes in the experimental binding energies from one system to another are well reproduced by the calculations. Without constraints on the residues in geometry optimization, the dispersion correction is necessary, since it improves the calculated structures and energetic results significantly.  相似文献   

6.
7.
Pleckstrin homology (PH) domains mediate protein–membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH–PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH–PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP2 or PIP3, allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the “canonical” (C) and/or “alternate” (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo.  相似文献   

8.
An increasing number of functional studies of proteins have shown that sequence and structural similarities alone may not be sufficient for reliable prediction of their interaction properties. This is particularly true for proteins recognizing specific antibodies, where the prediction of antibody-binding sites, called epitopes, has proven challenging. The antibody-binding properties of an antigen depend on its structure and related dynamics. Aiming to predict the antibody-binding regions of a protein, we investigate a new approach based on the integrated analysis of the dynamical and energetic properties of antigens, to identify nonoptimized, low-intensity energetic interaction networks in the protein structure isolated in solution. The method is based on the idea that recognition sites may correspond to localized regions with low-intensity energetic couplings with the rest of the protein, which allows them to undergo conformational changes, to be recognized by a binding partner, and to tolerate mutations with minimal energetic expense. Upon analyzing the results on isolated proteins and benchmarking against antibody complexes, it is found that the method successfully identifies binding sites located on the protein surface that are accessible to putative binding partners. The combination of dynamics and energetics can thus discriminate between epitopes and other substructures based only on physical properties. We discuss implications for vaccine design.  相似文献   

9.
To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.  相似文献   

10.
11.
In this work, by applying a non‐deterministic, randomly‐oriented minimal force to the dissociated CO ligand of the MauG‐CO system, the molecular‐dynamics (MD) behavior of this system could be quickly unraveled. It turned out that CO has no marked directional egress from the high‐spin c‐heme iron distal pocket. Rather, CO is able to exploit all interstices created during the protein fluctuations. Nonetheless, no steady route toward the surrounding solvent was ever observed: CO jumped first into other binding pockets before being able to escape the protein. In a few cases, on hitting the surrounding H2O molecules, CO was observed to reverse direction, re‐entering the protein. A contention that conformational inversion of the P107 ring provides a gate to the iron ion is not supported by the present simulations.  相似文献   

12.
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.  相似文献   

13.
The association reaction of CO and O2 with heme is expected to reflect the differences in the electronic structures of the two ligands. CO binding should be controlled by a high spin/low spin transition while oxygen binding is spin-allowed. Dioxygen should thus bind substantially faster than CO. The experimental association rates of the two ligands are, however, almost identical. We propose that the reaction is triggered in both cases by a fast structural intermediate which allows the CO molecule to bind adiabatically. A suitable structural transition has been identified recently by inelastic neutron scattering.  相似文献   

14.
 The paradigm that nature protects us from CO poisoning by forcing the bound CO to bend over in heme proteins, thereby reducing its binding affinity, is now in textbooks, but is nevertheless problematic. Results from vibrational spectroscopy give no evidence for bent CO, although X-ray crystallography continues to indicate appreciable distortions in myoglobin. However, the energetic significance of the discrepancy is doubtful, since new Density Functional Theory calculations indicate that much less energy is required to distort the CO than had been thought, perhaps 2 kcal/mol or less. Binding studies on site-directed mutants of myoglobin suggest that steric hindrance by the distal histidine is worth ca. 1 kcal/mol. While the distal histidine does account for the discrimination by Mb against CO and in favor of O2, most of the effect is due to its H-bond with bound O2. Received, accepted: 23 May 1997  相似文献   

15.
16.
Atomistic simulations of nitric oxide (NO) dynamics and migration in the trHbN of Mycobacterium tuberculosis are reported. From extensive molecular dynamics simulations (48 ns in total), the structural and energetic properties of the ligand docking sites in the protein have been characterized and a connectivity network between the ligand docking sites has been built. Several novel migration and exit pathways are found and are analyzed in detail. The interplay between a hydrogen-bonding network involving residues Tyr33 and Gln58 and the bound O2 ligand is discussed and the role of Phe62 residue in ligand migration is examined. It is found that Phe62 is directly involved in controlling ligand migration. This is reminiscent of His64 in myoglobin, which also plays a central role in CO migration pathways. Finally, infrared spectra of the NO molecule in different ligand docking sites of the protein are calculated. The pocket-specific spectra are typically blue-shifted by 5-10 cm−1, which should be detectable in future spectroscopic experiments.  相似文献   

17.
Summary To establish the energetic cost of protein synthesis, isolated trout hepatocytes were used to measure protein synthesis and respiration simultaneously at a variety of temperatures. The presence of bovine serum albumin was essential for the viability of isolated hepatocytes during isolation, but, in order to measure protein synthesis rates, oxygen consumption rates and RNA-to-protein ratios, BSA had to be washed from the cells. Isolated hepatocytes were found to be capable of protein synthesis and oxygen consumption at constant rates over a wide range of oxygen tension. Cycloheximide was used to inhibit protein synthesis. Isolated hepatocytes used on average 79.7±9.5% of their total oxygen consumption on cycloheximide-sensitive protein synthesis and 2.8±2.8% on maintaining ouabain-sensitive Na+/K+-ATPase activity. The energetic cost of protein synthesis in terms of moles of adenosine triphosphate per gram of protein synthesis decreased with increasing rates of protein synthesis at higher temperatures. It is suggested that the energetic cost consists of a fixed (independent of synthesis rate) and a variable component (dependent on synthesis rate).Abbreviations BSA bovine serum albumin - dpm disintegrations per min - k s fractional rate of protein synthesis - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulphonic acid - PHE phenylalanine; PO2 oxygen tension - PCA perchloric acid  相似文献   

18.
Binding‐site water molecules play a crucial role in protein‐ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding‐site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding‐site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding‐site water molecules by post‐processing molecular dynamics trajectories obtained from ligand‐free protein structure simulation in explicit water. Next, we implemented a distance‐dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding‐site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein‐ligand‐water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot‐spot binding‐site residues and structure‐based lead optimization. Proteins 2014; 82:1765–1776. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The tumor suppressor p53 plays essential role in conserving stability by preventing genome mutation, which is inactivated naturally by its negative regulator MDM2. Thus, targeting p53–MDM2 protein–protein interaction has been raised as a new cancer therapy in the medicinal community. In the current study, we report a successful application of an integrative protocol to design novel p53-derived peptides with cytotoxicity on human breast cancer cells. A quantitative structure–activity relationship-improved statistical potential was used to evaluate the binding potency of totally 24,054 single- and dual-point mutants of p53 peptide to MDM2 in a high-throughput manner, from which 46 peptide mutants with high predicted affinity and typical helical feature were involved in a rigorous modeling procedure that employed molecular dynamics simulations and post-binding energy analysis to systematically investigate the structural, energetic and dynamic aspects of peptide interactions with MDM2. Subsequently, a biological analysis was performed on a number of promising peptide candidates to determine their cytotoxic effects on human breast cancer cell line MDF-7. Six dual-point mutants were found to have moderate or high activities with their IC50 values ranging from 16.3 to 137.0 μM, which are better than that of wild-type p53 peptide (IC50 = 182.6 μM) and close to that of classical anticancer agent cis-platin (IC50 = 4.3 μM). Further, the most active peptide ETFSDWWKLLAE was selected as parent to further derive new mutants on the basis of the structural and energetic profile of its complex with MDM2. Consequently, three triple-point mutants (LTFSDWWKLLAE, ESFSDWWKLLAE and ETFADWWKLLAE) were obtained, and their biological activities (IC50 = 15.1, 27.0 and 8.7 μM, respectively) were determined to be comparable or better than the parent (IC50 = 16.3 μM).  相似文献   

20.
Reliable computational prediction of protein side chain conformations and the energetic impact of amino acid mutations are the key aspects for the optimization of biotechnologically relevant enzymatic reactions using structure‐based design. By improving the protein stability, higher yields can be achieved. In addition, tuning the substrate selectivity of an enzymatic reaction by directed mutagenesis can lead to higher turnover rates. This work presents a novel approach to predict the conformation of a side chain mutation along with the energetic effect on the protein structure. The HYDE scoring concept applied here describes the molecular interactions primarily by evaluating the effect of dehydration and hydrogen bonding on molecular structures in aqueous solution. Here, we evaluate its capability of side‐chain conformation prediction in classic remutation experiments. Furthermore, we present a new data set for evaluating “cross‐mutations,” a new experiment that resembles real‐world application scenarios more closely. This data set consists of protein pairs with up to five point mutations. Thus, structural changes are attributed to point mutations only. In the cross‐mutation experiment, the original protein structure is mutated with the aim to predict the structure of the side chain as in the paired mutated structure. The comparison of side chain conformation prediction (“remutation”) showed that the performance of HYDEprotein is qualitatively comparable to state‐of‐the art methods. The ability of HYDEprotein to predict the energetic effect of a mutation is evaluated in the third experiment. Herein, the effect on protein stability is predicted correctly in 70% of the evaluated cases. Proteins 2017; 85:1550–1566. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号