共查询到20条相似文献,搜索用时 15 毫秒
1.
全球变化和人类活动正以空前的速度在世界范围内改变着生物多样性, 这导致了全球生物多样性的锐减以及生产力的下降、病虫害的增加和抗入侵能力的减弱等生态问题。近30年来, 生态学家开始对于生物多样性的持续丧失是否以及如何影响生态系统功能的问题越来越感兴趣, 生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)关系的研究应运而生, 并成为生态学研究的热点之一。但长期以来, 研究者更多地关注单一生态系统功能, 而忽略了生态系统能够同时提供多种生态系统功能的能力, 即生态系统多功能性(ecosystem multifunctionality, EMF)。本文综述了EMF研究中功能指标的选择、生物多样性的不同维度、微生物多样性对EMF的影响以及其他非生物因子对EMF的驱动等进展。因只考虑单一功能可能会低估生物多样性对整体生态系统功能的影响, 故生物多样性与生态系统多功能性(BEMF)关系的研究成为BEF关系研究的重点。近年来, BEMF关系的研究发展较快, 在不同生态系统(包括水生、草地、森林、旱地、农业等)、不同研究尺度(从区域到全球尺度)、BEMF关系的驱动机制(从单一驱动机制到多种驱动机制共同作用)、研究方法(包括新概念以及新的量化方法的提出和应用)等方面均取得了新的进展。但仍有不足之处, 如对于EMF研究中功能指标的选取没有统一的标准、对地下微生物多样性的关注度不够、涉及多营养级水平下的BEMF关系研究较少、驱动EMF的机制仍存在争论等。未来应加强对于功能指标选取的标准研究, 综合分析地上、地下生物多样性以及非生物因子对EMF的整体影响, 加强生态系统多服务性(ecosystem multiserviceability, EMS)方法的研究和应用。 相似文献
2.
《Global Ecology and Biogeography》2018,27(7):760-786
Motivation
The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables included
The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grain
BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).Time period and grain
BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurement
BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.Software format
.csv and .SQL.3.
《Ecology letters》2017,20(11):1414-1426
The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small‐scale studies, and scaling‐up patterns of biodiversity–ecosystem functioning (B‐EF) remains challenging, in part because the importance of environmental factors in shaping B‐EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B‐EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B‐EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests. 相似文献
4.
B. E. L. Cerabolini S. Pierce A. Verginella G. Brusa R. M. Ceriani S. Armiraglio 《Plant biosystems》2016,150(3):550-557
Species-rich meadow and pasture habitats are recognised by the European Union Habitats Directive as targets for biodiversity conservation. High species richness is hypothesised to be associated with diversity in plant functional traits and life-history strategies, which are potentially restricted in situations of extremely high and low biomass production. However, variability in functional traits has yet to be investigated across a broad biomass range in nature. We measured variability in a range of functional traits and Grime's competitor, stress-tolerator, ruderal (CSR) strategies for species comprising lowland meadows, subalpine pastures, abandoned grassland and field margins at sites in northern Italy, alongside peak above-ground biomass. The factor most highly and positively correlated with species richness was strategy richness (the number of CSR strategies; Pearson's r = 0.864, P < 0.0001, n = 39), followed by variance in traits involved in leaf resource economics and the timing of flowering. Species richness, trait variance and strategy richness were greatest at intermediate biomass. Thus whilst extremes of biomass production were associated with relatively few taxa exhibiting similar trait values and specialised strategies, greater species richness was apparent in meadows and pastures in which species exhibited divergence in resource economics trait values, reproductive timing and strategy richness. 相似文献
5.
Small soda lakes represent one of the most vulnerable ecosystem types due to their high hydrological sensitivity to climate change and anthropogenic interventions. Since diatoms are excellent bioindicators, determining the β-diversity and the structuring dynamics of diatom metacommunities can provide valuable information for conservation planning for soda pans. In this study, two diatom metacommunities were surveyed monthly during a one-year period from distinct regions of the Carpathian basin: the Fert?-Hanság National Park (FH) between 2013 and 2014, and the Danube-Tisza Interfluve (DT) between 2014 and 2015. We explored whether β-diversity of diatom assemblages in the two regions is enhanced by species turnover or nestedness (related to richness differences) and investigated the role of deterministic and stochastic processes in shaping β-diversity patterns. Furthermore, we evaluated the contribution of environmental variables, geographic distance and temporal variation to community structure. High β-diversity (>90%) was revealed for both metacommunities, and was maintained primarily by species turnover. Within the metacommunity of the DT where the natural hydrological cycle of soda pans is not disturbed, diatom communities assembled mainly due to the selection force of environment at a spatiotemporal scale. In the soda pans located in the habitat reconstruction area of the FH, besides species-sorting, significant temporal variation in community structure appeared as a result of water management and periodic water supply. Our results point to the need for a conservation management strategy which maintains the natural hydrological regime of small saline lakes, and therefore their habitat heterogeneity which is of high conservation value. 相似文献
6.
7.
Nathan G. Swenson Brian J. Enquist Jason Pither Andrew J. Kerkhoff Brad Boyle Michael D. Weiser James J. Elser William F. Fagan Jimena Forero‐Montaña Nikolaos Fyllas Nathan J. B. Kraft Jeffrey K. Lake Angela T. Moles Sandra Patiño Oliver L. Phillips Charles A. Price Peter B. Reich Carlos A. Quesada James C. Stegen Renato Valencia Ian J. Wright S. Joseph Wright Sandy Andelman Peter M. Jørgensen Thomas E. Lacher Jr Abel Monteagudo M. Percy Núñez‐Vargas Rodolfo Vasquez‐Martínez Kristen M. Nolting 《Global Ecology and Biogeography》2012,21(8):798-808
Aim In recent years evidence has accumulated that plant species are differentially sorted from regional assemblages into local assemblages along local‐scale environmental gradients on the basis of their function and abiotic filtering. The favourability hypothesis in biogeography proposes that in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than that expected given the species richness and the global pool of traits. Thus it seems likely that differential filtering of plant traits along local‐scale gradients may scale up to explain the distribution, diversity and filtering of plant traits in regional‐scale assemblages across continents. The present work aims to address this prediction. Location North and South America. Methods We combine a dataset comprising over 5.5 million georeferenced plant occurrence records with several large plant functional trait databases in order to: (1) quantify how several critical traits associated with plant performance and ecology vary across environmental gradients; and (2) provide the first test of whether the woody plants found within 1° and 5° map grid cells are more or less functionally diverse than expected, given their species richness, across broad gradients. Results The results show that, for many of the traits studied, the overall distribution of functional traits in tropical regions often exceeds the expectations of random sampling given the species richness. Conversely, temperate regions often had narrower functional trait distributions than their smaller species pools would suggest. Main conclusion The results show that the overall distribution of function does increase towards the equator, but the functional diversity within regional‐scale tropical assemblages is higher than that expected given their species richness. These results are consistent with the hypothesis that abiotic filtering constrains the overall distribution of function in temperate assemblages, but tropical assemblages are not as tightly constrained. 相似文献
8.
Evans KL Newson SE Storch D Greenwood JJ Gaston KJ 《The Journal of animal ecology》2008,77(2):395-405
1. The spatial scale of analysis may influence the nature, strength and underlying drivers of macroecological patterns, one of the most frequently discussed of which is the relationship between species richness and environmental energy availability. 2. It has been suggested that species-energy relationships are hump-shaped at fine spatial grains and consistently positive at larger regional grains. The exact nature of this scale dependency is, however, the subject of much debate as relatively few studies have investigated species-energy relationships for the same assemblage across a range of spatial grains. Here, we contrast species-energy relationships for the British breeding avifauna at spatial grains of 1 km x 1 km, 2 km x 2 km and 10 km x 10 km plots, while maintaining a constant spatial extent. 3. Analyses were principally conducted using data on observed species richness. While survey work may fail to detect some species, observed species richness and that estimated using nonparametric techniques were strongly positively correlated with each other, and thus exhibit very similar spatial patterns. Moreover, the forms of species-energy relationships using observed and estimated species richness were statistically indistinguishable from each other. 4. Positive decelerating species-energy relationships arise at all three spatial grains. There is little evidence that the explanatory power of these relationships varies with spatial scale. However, ratios of regional (large-scale) to local (small-scale) species richness decrease with increasing energy availability, indicating that local richness responds to energy with a steeper gradient than does regional richness. Local assemblages thus sample a greater proportion of regional richness at higher energy levels, suggesting that spatial turnover of species richness is lower in high-energy regions. Similarly, a crude measure of temporal turnover, the ratio of cumulative species richness over a 4-year period to species richness in a single year, is lower in high-energy regions. These negative relationships between turnover and energy appear to be causal as both total and mean occupancy per species increases with energy. 5. While total density in 1 km x 1 km plots correlates positively with energy availability, such relationships are very weak for mean density per species. This suggests that the observed association between total abundance and species richness may not be mediated by population extinction rates, as predicted by the more individuals hypothesis. 6. The sampling mechanism suggests that species-energy relationships arise as high-energy areas support a greater number of individuals, and that random allocation of these individuals to local areas from a regional assemblage will generate species-energy relationships. While randomized local species-energy relationships are linear and positive, predicted richness is consistently greater than that observed. The mismatch between the observed and randomized species-energy relationships probably arises as a consequence of the aggregated nature of species distributions. The sampling mechanism, together with species spatial aggregation driven by limited habitat availability, may thus explain the species-energy relationship observed at this spatial scale. 相似文献
9.
Jansen Smith Marina C. Rillo Ádám T. Kocsis Maria Dornelas David Fastovich Huai-Hsuan M. Huang Lukas Jonkers Wolfgang Kiessling Qijian Li Lee Hsiang Liow Miranda Margulis-Ohnuma Stephen Meyers Lin Na Amelia M. Penny Kate Pippenger Johan Renaudie Erin E. Saupe Manuel J. Steinbauer Mauro Sugawara Adam Tomašovỳch John W. Williams Moriaki Yasuhara Seth Finnegan Pincelli M. Hull 《Global Ecology and Biogeography》2023,32(10):1680-1689
Motivation
We have little understanding of how communities respond to varying magnitudes and rates of environmental perturbations across temporal scales. BioDeepTime harmonizes assemblage time series of presence and abundance data to help facilitate investigations of community dynamics across timescales and the response of communities to natural and anthropogenic stressors. BioDeepTime includes time series of terrestrial and aquatic assemblages of varying spatial and temporal grain and extent from the present-day to millions of years ago.Main Types of Variables Included
BioDeepTime currently contains 7,437,847 taxon records from 10,062 assemblage time series, each with a minimum of 10 time steps. Age constraints, sampling method, environment and taxonomic scope are provided for each time series.Spatial Location and Grain
The database includes 8752 unique sampling locations from freshwater, marine and terrestrial ecosystems. Spatial grain represented by individual samples varies from quadrats on the order of several cm2 to grid cells of ~100 km2.Time Period and Grain
BioDeepTime in aggregate currently spans the last 451 million years, with the 10,062 modern and fossil assemblage time series ranging in extent from years to millions of years. The median extent of modern time series is 18.7 years and for fossil series is 54,872 years. Temporal grain, the time encompassed by individual samples, ranges from days to tens of thousands of years.Major Taxa and Level of Measurement
The database contains information on 28,777 unique taxa with 4,769,789 records at the species level and another 271,218 records known to the genus level, including time series of benthic and planktonic foraminifera, coccolithophores, diatoms, ostracods, plants (pollen), radiolarians and other invertebrates and vertebrates. There are to date 7012 modern and 3050 fossil time series in BioDeepTime.Software Format
SQLite, Comma-separated values. 相似文献10.
We tested the hypothesis that biodiversity decreases the spatial variability of biomass production between subplots taken within experimental grassland plots. Our findings supported this hypothesis if functional diversity (weighted Rao's Q ) was considered. Further analyses revealed that diversity in rooting depth and clonal growth form were the most important components of functional diversity stabilizing productivity. Using species or functional group richness as diversity measures there was no significant effect on spatial variability of biomass production, demonstrating the importance of the biodiversity component considered. Moreover, we found a significant increase in spatial variability of productivity with decreasing size of harvested area, suggesting small-scale heterogeneity as an important driver. The ability of diverse communities to stabilize biomass production across spatial heterogeneity may be due to complementary use of spatial niches. Nevertheless, the positive effect of functional diversity on spatial stability appears to be less pronounced than previously reported effects on temporal stability. 相似文献
11.
Human activities are causing a rapid loss of biodiversity, which impairs ecosystem functions and services. Therefore, understanding which processes shape how biodiversity is distributed along spatial and environmental gradients is a first step to guide conservation and management efforts. We aimed to determine the relative explanatory importance of biogeographic, environmental, landscape and spatial variables on assemblage dissimilarities and functional diversity of dung beetles along the Atlantic Forest–Pampa (i.e. forest–grassland) transition zone located in Southeast South America. We described each site according to their biogeographic position, environmental conditions, landscape features and spatial patterns. The compositional dissimilarity was partitioned into turnover and nestedness components of β‐diversity. Mantel tests and generalised dissimilarity models were used to relate β‐diversity and its components to biogeographic, environmental, landscape and spatial variables. Variation partitioning analysis was used to estimate the pure and shared variation in species composition and functional diversity explained by the four categories of predictors. Biome domain was the main factor causing dung beetle compositional dissimilarity, with a high species replacement between Atlantic Forest and Pampa. Biogeographic, environmental, landscape and spatial distances also affected the patterns of dung beetle dissimilarity and β‐diversity components. The shared effects of the four sets of predictors explained most of the variation in dung beetle composition. A similar response pattern was found for dung beetle functional diversity, which excluded biogeographic effects. Only the pure effects of environmental and spatial predictors were significant for species composition and functional diversity. Our results indicate that dung beetle species composition and functional diversity are jointly driven by environmental, landscape and spatial predictors with higher pure environmental and spatial effects. The forest–grassland transition zone promotes a strong species and trait replacement highly influenced both by environmental filtering and dispersal limitation. 相似文献
12.
13.
植物功能性状、功能多样性与生态系统功能: 进展与展望 总被引:1,自引:0,他引:1
植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状-生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性-生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。 相似文献
14.
15.
Wilfried Thuiller Sandra Lavorel Martin T. Sykes Miguel B. Araújo 《Diversity & distributions》2006,12(1):49-60
Rapid anthropogenic climate change is already affecting species distributions and ecosystem functioning worldwide. We applied niche-based models to analyse the impact of climate change on tree species and functional diversity in Europe. Present-day climate was used to predict the distributions of 122 tree species from different functional types (FT). We then explored projections of future distributions under one climate scenario for 2080, considering two alternative dispersal assumptions: no dispersal and unlimited dispersal. The species-rich broadleaved deciduous group appeared to play a key role in the future of different European regions. Temperate areas were projected to lose both species richness and functional diversity due to the loss of broadleaved deciduous trees. These were projected to migrate to boreal forests, thereby increasing their species richness and functional diversity. Atlantic areas provided an intermediate case, with a predicted reduction in the numbers of species and occasional predicted gains in functional diversity. This resulted from a loss in species within the broadleaved deciduous FT, but overall maintenance of the group. Our results illustrate the fact that both species-specific predictions and functional patterns should be examined separately in order to assess the impacts of climate change on biodiversity and gain insights into future ecosystem functioning. 相似文献
16.
祁连山北麓四种天然草地蝗虫物种多样性比较研究 总被引:1,自引:1,他引:1
为了研究不同草地类型间草地蝗虫多样性的时空变化特性,于2008和2009年6-10月在祁连山北麓4种天然草地设置采样点,用网捕法调查草地蝗虫物种丰富度和相对多度。共捕获到蝗虫28种(亚种),隶属于7科15属。结果显示:4种不同草地类型平均蝗虫丰富度变化幅度为7~23种,较低的蝗虫丰富度出现在高山灌丛,2008和2009年其丰富度分别为7和8种;而高山草地蝗虫丰富度值最高,两年分别为16和23种;荒漠草地和高山草甸蝗虫丰富度介于以上两者之间,两年间丰富度值分别为15和15及9和12种。结果提示,水热资源状况、草地植被和地貌地势等特性决定的空间异质性对草地蝗虫群落组成、多样性和空间分布产生重要影响,不同生境间草地蝗虫时空分布呈现明显分化。 相似文献
17.
Benjamin Baiser Julian D. Olden Sydne Record Julie L. Lockwood Michael L. McKinney 《Proceedings. Biological sciences / The Royal Society》2012,279(1748):4772-4777
Human activities have reorganized the earth''s biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from −0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization. 相似文献
18.
19.
Anna Trnroos Laurene Pecuchet Jens Olsson Anna Grdmark Mats Blomqvist Martin Lindegren Erik Bonsdorff 《Global Change Biology》2019,25(4):1235-1246
The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait‐based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the functioning of the ecosystems. Our mechanistic understanding of and ability to predict community change is still impeded by the lack of knowledge in long‐term functional dynamics that span several trophic levels. To address this, we assessed species richness and multiple dimensions of functional diversity and dynamics of two interacting key organism groups in the marine food web: fish and zoobenthos. We utilized unique time series‐data spanning four decades, from three environmentally distinct coastal areas in the Baltic Sea, and assembled trait information on six traits per organism group covering aspects of feeding, living habit, reproduction and life history. We identified gradual long‐term trends, rather than abrupt changes in functional diversity (trait richness, evenness, dispersion) trait turnover, and overall multi‐trait community composition. The linkage between fish and zoobenthic functional community change, in terms of correlation in long‐term trends, was weak, with timing of changes being area and trophic group specific. Developments of fish and zoobenthos traits, particularly size (increase in small size for both groups) and feeding habits (e.g. increase in generalist feeding for fish and scavenging or predation for zoobenthos), suggest changes in trophic pathways. We summarize our findings by highlighting three key aspects for understanding functional change across trophic groups: (a) decoupling of species from trait richness, (b) decoupling of richness from density and (c) determining of turnover and multi‐trait dynamics. We therefore argue for quantifying change in multiple functional measures to help assessments of biodiversity change move beyond taxonomy and single trophic groups. 相似文献
20.
Andrés Baselga 《Global Ecology and Biogeography》2012,21(12):1223-1232
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 , Global Ecology and Biogeography, 19 , 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity. 相似文献