首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0. 5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICB(glc). Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B.  相似文献   

2.
In Escherichia coli, disruption of ptsG, which encodes the glucose-specific permease of the phosphotransferase transport system (PTS) protein EIICBGlc, is crucial for high succinate production. This mutation can, however, cause very slow growth and low glucose consumption rates. The ptsG mutant (TUQ2), from wild type E. coli W1485, and E. coli galP (encoding galactose permease) and glk (encoding glucose kinase) gene expression plasmids were constructed. TUQ2 increased the generation time to approximately 4 h and gave a higher final cell density of 0.5 g/l by expression of galP. However, glk expression had no effect on the mutant. After expression of pyruvate carboxylase (PYC) and galactose permease, the ptsG mutant showed higher succinate yield (1.2 mol/mol glucose) and the specific rate of glucose consumption from 0.33 to 0.6 g/1 h. Received 31 August 2005; Revisions requested 27 September 2005; Revisions received 1 November 2005; Accepted 2 November 2005 An erratum to this article is available at .  相似文献   

3.
Systems metabolic engineering and in silico analyses are necessary to study gene knockout candidate for enhanced succinic acid production by Escherichia coli. Metabolically engineered E. coli has been reported to produce succinate from glucose and glycerol. However, investigation on in silico deletion of ptsG/b1101 gene in E. coli from glycerol using minimization of metabolic adjustment algorithm with the OptFlux software platform has not yet been elucidated. Herein we report what is to our knowledge the first direct predicted increase in succinate production following in silico deletion of the ptsG gene in E. coli GEM from glycerol with the OptFlux software platform. The result indicates that the deletion of this gene in E. coli GEM predicts increased succinate production that is 20% higher than the wild-type control model. Hence, the mutant model maintained a growth rate that is 77% of the wild-type parent model. It was established that knocking out of the ptsG/b1101 gene in E. coli using glucose as substrate enhanced succinate production, but the exact mechanism of this effect is still obscure. This study informs other studies that the deletion of ptsG/b1101 gene in E. coli GEM predicted increased succinate production, enabling a model-driven experimental inquiry and/or novel biological discovery on the underground metabolic role of this gene in E. coli central metabolism in relation to increasing succinate production when glycerol is the substrate.  相似文献   

4.
Corynebacterium glutamicum strains NC-2 were able to grow on xylose as sole carbon sources in our previous work. Nevertheless, it exhibited the major shortcoming that the xylose consumption was repressed in the presence of glucose. So far, regarding C. glutamicum, there are a number of reports on ptsG gene, the glucose-specific transporter, involved in glucose metabolism. Recently, we found ptsG had influence on xylose utilization and investigated the ptsG gene in response to xylose utilization in C. glutamicum with the aim to improve xylose consumption and simultaneously utilized glucose and xylose. The ptsG-deficient mutant could grow on xylose, while exhibiting noticeably reduced growth on xylose as sole carbon source. A mutant deficient in ptsH, a general PTS gene, exhibited a similar phenomenon. When complementing ptsG gene, the mutant ΔptsG-ptsG restored the ability to grow on xylose similarly to NC-2. These indicate that ptsG gene is not only essential for metabolism on glucose but also important in xylose utilization. A ptsG-overexpressing recombinant strain could not accelerate glucose or xylose metabolism. When strains were aerobically cultured in a sugar mixture of glucose and xylose, glucose and xylose could not be utilized simultaneously. Interestingly, the ΔptsG strain could co-utilize glucose and xylose under oxygen-deprived conditions, though the consumption rate of glucose and xylose dramatically declined. It was the first report of ptsG gene in response to xylose utilization in C. glutamicum.  相似文献   

5.
Insulin action on Escherichia coli was studied using wild type E. coli B/r and K12 strains and a number of phosphoenolpyruvate phosphotranferase mutants. In vivo, the effects of insulin on the differential rate of tryptophanase synthesis, The rate of α-methyglucoside uptake and the rate of growth on glucose were determined in E. coli B/r. in vitro, the effect of insulin on the adenylate cyclase and the phosphotransferase activities was determined using toluenized cell preparations of E. coli B/r, E. coli K12 and phosphotransferase mutant strains. The specificity of insulin action on E. coli was determined using glucagon, vasopressin and somatropin as well as insulin antisera. Results show the specific action of insulin n E. coli, inhibiting tryptophanase induction and adenylate cyclase activity, while stimulating growth on glucose and uptake and phosphorylation of α-methylglucosode  相似文献   

6.
Succinate fermentation was investigated in Escherichia coli strains overexpressing Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PEPCK). In E. coli K-12, PEPCK overexpression had no effect on succinate fermentation. In contrast, in the phosphoenolpyruvate carboxylase mutant E. coli strain K-12 ppc::kan, PEPCK overexpression increased succinate production 6.5-fold.  相似文献   

7.
The production of succinate by engineered Escherichia coli strains has been widely investigated. In this study, quantitative comparison of metabolic fluxes was carried out for the wild-type E. coli strain and a quintuple mutant strain QZ1111 that was designed for the production of succinate aerobically by knocking out five genes (ptsG, poxB, pta, sdhA, iclR) of the wild-type E. coli MG1655. Metabolic flux distributions of both strains were quantified by 13C-labeling experiments, together with the determination of physiological parameters and the expression level of key genes. The experimental results indicated that under the same aeration condition the fraction of oxaloacetate molecules originating from phosphoenolpyruvate was increased in E. coli QZ1111 compared to that in the wild-type E. coli MG1655. The glyoxylate shunt was likely activated in E. coli QZ1111 only under high aeration condition but repressed in other conditions, indicating that the deletion of the iclR gene could not completely remove the repression of the glyoxylate shunt with limited oxygen supply. Our results also suggested further genetic manipulation strategies to enhance the production yield of succinate.  相似文献   

8.
In the post-genome era, it is one challenge to understand the cellular metabolism at the systematic levels. Mathematical modeling of microorganisms and subsequent computer simulation are effective tools for systems biology. In this paper, based on the genome-scale Escherichia coli stoichiometric model iJR904, through the GAMS linear programming package, the in silico maximal succinate yield was estimated to be 1.714 mol/mol glucose. When another two constraints were added, the maximal succinate yield dropped to 1.60 mol/mol glucose. Further analysis substantiated the uniqueness of the flux distribution under such constraints. After comparisons with the metabolic flux analysis (MFA) results computed from the wet experimental data of the three kinds of E. coli, three potential improvement target sites, the glucose phosphotransferase transport system, the pyruvate carboxylase, and the glyoxylate shunt, were identified and selected for the genetic modifications. All the three genetic modified strains showed increased succinate yield. The final strain TUQ19/pQZ6 had a high yield of 1.29 mol succinate/mol glucose and high productivity. The success of the above experiments proved that this in silico optimal succinate production pathway is reasonable and practical. This method may also be used as a general strategy to help enhance the yields of other favorable metabolites in E. coli.  相似文献   

9.
In this study, we constructed and characterized Escherichia coli strains deficient in mixed acid fermentation pathways, which are capable of rapid aerobic growth on glucose without pronounced bacterial Crabtree effect. The main pathways of production of acetic and lactic acids and ethanol in these strains were inactivated by a deletion of the ackA, pta, poxB, ldhA, and adhE genes. The phosphoenolpyruvate-dependent phosphotransferase system of glucose transport and phosphorylation was inactivated in the strains by a deletion of the ptsG gene. The possibility of alternative transport and phosphorylation of the carbohydrate substrate was ensured in recombinants by constitutive expression of the galP and glk genes, which encode the low-affinity H+-symporter of D-galactose and glucokinase, respectively. The resulting SGM1.0ΔptsG PtacgalP and SGM1.0ΔptsG PLglk PtacgalP strains were capable of rapid aerobic growth in a minimal medium containing 2.0 and 10.0 g/L of glucose and secreted only small amounts of acetic acid and trace amounts of pyruvic acid.  相似文献   

10.
Corynebacterium glutamicum is particularly known for its potentiality in succinate production. We engineered C. glutamicum for the production of succinate. To enhance C3–C4 carboxylation efficiency, chromosomal integration of the pyruvate carboxylase gene pyc resulted in strain NC-4. To increase intracellular NADH pools, the pntAB gene from Escherichia coli, encoding for transhydrogenase, was chromosomally integrated into NC-4, leading to strain NC-5. Furthermore, we deleted pgi gene in strain NC-5 to redirect carbon flux to the pentose phosphate pathway (PPP). To solve the drastic reduction of PTS-mediated glucose uptake, the ptsG gene from C. glutamicum, encoding for the glucose-specific transporter, was chromosomally integrated into pgi-deficient strain resulted in strain NC-6. In anaerobic batch fermentation, the production of succinate in pntAB-overexpressing strain NC-5 increased by 14% and a product yield of 1.22 mol/mol was obtained. In anaerobic fed-batch process, succinic acid concentration reached 856 mM by NC-6. The yields of succinate from glucose were 1.37 mol/mol accompanied by a very low level of by-products. Activating PPP and transhydrogenase in combination led to a succinate yield of 1.37 mol/mol, suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

11.
The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) of Escherichia coli was usually inactivated to increase PEP supply for succinate production. However, cell growth and glucose utilization rate decreased significantly with PTS inactivation. In this work, two glucose transport proteins and two glucokinases (Glk) from E. coli and Zymomonas mobilis were recruited in PTS? strains, and their impacts on glucose utilization and succinate production were compared. All PTS? strains recruiting Z. mobilis glucose facilitator Glf had higher glucose utilization rates than PTS? strains using E. coli galactose permease (GalP), which was suggested to be caused by higher glucose transport velocity and lower energetic cost of Glf. The highest rate obtained by combinatorial modulation of glf and glk E. coli (2.13 g/L?h) was 81 % higher than the wild-type E. coli and 30 % higher than the highest rate obtained by combinatorial modulation of galP and glk E. coli . On the other hand, although glucokinase activities increased after replacing E. coli Glk with isoenzyme of Z. mobilis, glucose utilization rate decreased to 0.58 g/L?h, which was assumed due to tight regulation of Z. mobilis Glk by energy status of the cells. For succinate production, using GalP led to a 20 % increase in succinate productivity, while recruiting Glf led to a 41 % increase. These efficient alternative glucose utilization pathways obtained in this work can also be used for production of many other PEP-derived chemicals, such as malate, fumarate, and aromatic compounds.  相似文献   

12.
We report a new approach for the simultaneous conversion of xylose and glucose sugar mixtures into products by fermentation. The process simultaneously uses two substrate-selective strains of Escherichia coli, one which is unable to consume glucose and one which is unable to consume xylose. The xylose-selective (glucose deficient) strain E. coli ZSC113 has mutations in the glk, ptsG and manZ genes while the glucose-selective (xylose deficient) strain E. coli ALS1008 has a mutation in the xylA gene. By combining these two strains in a single process, xylose and glucose are consumed more quickly than by a single-organism approach. Moreover, we demonstrate that the process is able to adapt to changing concentrations of these two sugars, and therefore holds promise for the conversion of variable sugar feed streams, such as lignocellulosic hydrolysates.  相似文献   

13.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

14.
A genomic library of Zymomonas mobilis DNA was constructed in Escherichia coli using cosmid vector pHC79. Immunological screening of 483 individual E. coli strains revealed two clones expressing pyruvate decarboxylase, the key enzyme for efficient ethanol production of Z. mobilis. The two plasmids, pZM1 and pZM2, isolated from both E. coli strains were found to be related and to exhibit a common 4.6 kb SphI fragment on which the gene coding for pyruvate decarboxylase, pdc, was located.The pdc gene was similarily well expressed in both aerobically and anaerobically grown E. coli cells, and exerted a considerable effect on the amount of fermentation products formed. During fermentative growth on 25 mM glucose, plasmid-free E. coli lacking a pdc gene produced 6.5 mM ethanol, 8.2 mM acetate, 6.5 mM lactate, 0.5 mM succinate, and about 1 mM formate leaving 10.4 mM residual glucose. In contrast, recombinant E. coli harbouring a cloned pdc gene from Z. mobilis completely converted 25 mM glucose to up to 41.5 mM ethanol while almost no acids were formed.  相似文献   

15.
Depending on the availability of oxygen, Escherichia coli is able to switch between aerobic respiratory metabolism and anaerobic mixed acid fermentation. An important, yet understudied, metabolic mode is the micro-aerobic metabolism at intermediate oxygen availabilities. The relationship between oxygen input, physiology and gene expression of E. coli MG1655 and two isogenic mutants lacking succinate dehydrogenase (SDH) and fumarate reductase (FRD) activities was analyzed at different aerobiosis levels. Growth rate and cell yield were very similar to the parent strain. By-product formation was altered in the sdhC mutant to higher acetic acid and glutamate production in batch cultures. In continuous cultures with defined oxygen input gene expression analysis revealed a dependency of many catabolic genes to aerobiosis. Acetate excretion was still detectable under aerobic conditions in the sdhC mutant; the frdA mutant lacked anaerobic succinate excretion. Anaerobic repression of the sdh operon was diminished in the frdA strain, possibly to allow SDH to partially replace FRD. The experiments illustrate the remarkable adaptability of E. coli physiology—to compensate for the absence of important metabolic genes by altering carbon flux and/or gene expression such that there are only minor changes in growth capability across the aerobiosis range.  相似文献   

16.
Succinic acid is an important platform chemical that has broad applications and is been listed as one of the top twelve bio-based chemicals produced from biomass by the US Department of Energy. The metabolic role of Escherichia coli formate dehydrogenase-O (fdoH) under anaerobic conditions in relation to succinic acid production remained largely unspecified. Herein we report, what are to our knowledge, the first metabolic fdoH gene knockout that have enhanced succinate production using glucose and glycerol substrates in E. coli. Using the most recent E. coli reconstruction iJO1366, we engineered its host metabolism to enhance the anaerobic succinate production by deleting the fdoH gene, which blocked H+ conduction across the mutant cell membrane for the enhanced succinate production. The engineered mutant strain BMS4 showed succinate production of 2.05 g l?1 (41.2-fold in 7 days) from glycerol and .39 g l?1 (6.2-fold in 1 day) from glucose. This work revealed that a single deletion of the fdoH gene is sufficient to increase succinate production in E. coli from both glucose and glycerol substrates.  相似文献   

17.
Escherichia coli was metabolically engineered for the production of d-ribose, a functional five-carbon sugar, from xylose. For the accumulation of d-ribose, two genes of transketolase catalyzing the conversion of d-ribose-5-phosphate to sedoheptulose-7-phosphate in pentose phosphate pathway were disrupted to create a transketolase-deficient E. coli SGK013. In batch fermentation, E. coli SGK013 grew by utilizing glucose and then started to produce d-ribose from xylose after glucose depletion. E. coli SGK013 produced 0.75 g/L of d-ribose, which was identical to the standard d-ribose as confirmed by HPLC and LC/MS analyses. To improve D-ribose production, the ptsG gene encoding the glucose-specific IICB component was disrupted additionally, resulting in the construction of E. coli SGK015. The carbon catabolite repression-negative E. coli SGK015 utilized xylose and glucose simultaneously and produced up to 3.75 g/L of d-ribose, which is a 5-fold improvement compared to that of E. coli SGK013.  相似文献   

18.
The CreBC (carbon source-responsive) two-component regulation system of Escherichia coli affects a number of functions, including intermediary carbon catabolism. The impacts of different creC mutations (a ΔcreC mutant and a mutant carrying the constitutive creC510 allele) on bacterial physiology were analyzed in glucose cultures under three oxygen availability conditions. Differences in the amounts of extracellular metabolites produced were observed in the null mutant compared to the wild-type strain and the mutant carrying creC510 and shown to be affected by oxygen availability. The ΔcreC strain secreted more formate, succinate, and acetate but less lactate under low aeration. These metabolic changes were associated with differences in AckA and LdhA activities, both of which were affected by CreC. Measurement of the NAD(P)H/NAD(P)+ ratios showed that the creC510 strain had a more reduced intracellular redox state, while the opposite was observed for the ΔcreC mutant, particularly under intermediate oxygen availability conditions, indicating that CreC affects redox balance. The null mutant formed more succinate than the wild-type strain under both low aeration and no aeration. Overexpression of the genes encoding phosphoenolpyruvate carboxylase from E. coli and a NADH-forming formate dehydrogenase from Candida boidinii in the ΔcreC mutant further increased the yield of succinate on glucose. Interestingly, the elimination of ackA and adhE did not significantly improve the production of succinate. The diverse metabolic effects of this regulator on the central biochemical network of E. coli make it a good candidate for metabolic-engineering manipulations to enhance the formation of bioproducts, such as succinate.  相似文献   

19.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

20.
Several metabolic engineered Escherichia coli strains were constructed and evaluated for four-carbon dicarboxylic acid production. Fumarase A, fumarase B and fumarase C single, double and triple mutants were constructed in a ldhA adhE mutant background overexpressing the pyruvate carboxylase from Lactococcus lactis. All the mutants produced succinate as the main four-carbon (C4) dicarboxylic acid product when glucose was used as carbon source with the exception of the fumAC and the triple fumB fumAC deletion strains, where malate was the main C4-product with a yield of 0.61–0.67 mol (mole glucose)?1. Additionally, a mdh mutant strain and a previously engineered high-succinate-producing strain (SBS550MG-Cms pHL413-Km) were investigated for aerobic malate production from succinate. These strains produced 40.38 mM (5.41 g/L) and 50.34 mM (6.75 g/L) malate with a molar yield of 0.53 and 0.55 mol (mole succinate)?1, respectively. Finally, by exploiting the high-succinate production capability, the strain SBS550MG-Cms243 pHL413-Km showed significant malate production in a two-stage process from glucose. This strain produced 133 mM (17.83 g/L) malate in 47 h, with a high yield of 1.3 mol (mole glucose)?1 and productivity of 0.38 g L?1 h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号