首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vascular wilt fungus Verticillium dahliae produces persistent resting structures, known as microsclerotia, which are important for this plant pathogen's long-term survival. Previously, we identified a hydrophobin gene (VDH1) that is necessary for microsclerotial production. The current study of VDH1's expression, and its regulation, was undertaken to provide insight into the largely uncharacterized molecular mechanisms relevant to microsclerotial development. Reporter gene analysis showed that VDH1 is specifically expressed in developing microsclerotia, as well as in hyphal fusions and conidiophores, suggesting that VDH1 mediates the development of microsclerotia from conidiophores and other hyphal structures. We report also on the effects of nutrient availability on the regulation of microsclerotial development in V. dahliae; the gene's activity appears to be regulated in response to carbon availability. Lastly, constitutive expression of VDH1 results in delayed disease symptom development, but has no noticeable effect on in vitro microsclerotial development.  相似文献   

2.
Gao F  Zhou BJ  Li GY  Jia PS  Li H  Zhao YL  Zhao P  Xia GX  Guo HS 《PloS one》2010,5(12):e15319
Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. The life cycle of V. dahliae includes three vegetative phases: parasitic, saprophytic and dormant. The dormant microsclerotia are the primary infectious propagules, which germinate when they are stimulated by root exudates. In this study, we report the first application of Agrobacterium tumefaciens-mediated transformation (ATMT) for construction of insertional mutants from a virulent defoliating isolate of V. dahliae (V592). Changes in morphology, especially a lack of melanized microsclerotia or pigmentation traits, were observed in mutants. Together with the established laboratory unimpaired root dip-inoculation approach, we found insertional mutants to be affected in their pathogenicities in cotton. One of the genes tagged in a pathogenicity mutant encoded a glutamic acid-rich protein (VdGARP1), which shared no significant similarity to any known annotated gene. The vdgarp1 mutant showed vigorous mycelium growth with a significant delay in melanized microsclerotial formation. The expression of VdGARP1 in the wild type V529 was organ-specific and differentially regulated by different stress agencies and conditions, in addition to being stimulated by cotton root extract in liquid culture medium. Under extreme infertile nutrient conditions, VdGARP1 was not necessary for melanized microsclerotial formation. Taken together, our data suggest that VdGARP1 plays an important role in sensing infertile nutrient conditions in infected cells to promote a transfer from saprophytic to dormant microsclerotia for long-term survival. Overall, our findings indicate that insertional mutagenesis by ATMT is a valuable tool for the genome-wide analysis of gene function and identification of pathogenicity genes in this important cotton pathogen.  相似文献   

3.
4.
5.
大丽轮枝菌为典型的土传维管束病原真菌,针对其致病相关基因的挖掘与功能解析一直是植物病理学研究的热点.大丽轮枝菌具有定殖维管束、"毒素"致萎、形成微菌核、种群分化多元化等特征,这些性状最终支撑或决定了病原对寄主的致病性基础.从进化角度来说,功能基因决定生物学性状.截至目前,在大丽轮枝菌中已鉴定出上百个功能基因;但针对其与...  相似文献   

6.
The ascomycete Verticillium dahliae causes worldwide vascular wilt of many field and horticultural plants. The melanized resting structures of this fungus, so-called microsclerotia, survive for many years in soils and continuously re-infect plants. Due to the absence of known fungicides, Verticillium wilt causes immense crop losses. We discovered that the Gram-positive, spore-forming soil bacterium Streptomyces lividans expresses members of the prodiginine family during co-cultivation with V. dahliae. Using HPLC and LC-MS analysis of cultures containing S. lividans alone or grown together with V. dahliae, we found that undecylprodigiosin [394.4 M+H](+) is highly abundant, and streptorubin B [392.4 M+H](+) is present in smaller amounts. Within co-cultures, the quantity of undecylprodigiosin increased considerably and pigment concentrated at and within fungal hyphae. The addition of purified undecylprodigiosin to growing V. dahliae hyphae strongly reduced microsclerotia formation. Undecylprodigiosin was also produced when S. lividans grew on the roots of developing Arabidopsis thaliana plants. Furthermore, the presence of the undecylprodigiosin producer led to an efficient reduction of V. dahliae hyphae and microsclerotia on plant-roots. Based on these novel findings and previous knowledge, we deduce that the prodiginine investigated leads to multiple cellular effects, which ultimately impair specific pathways for signal transduction and apoptosis of the fungal plant pathogen.  相似文献   

7.
Autophagy is a widely conserved intracellular process for degradation and recycling of proteins,organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in foliar in...  相似文献   

8.
《Fungal biology》2019,123(7):539-546
Sunflower yellow wilt is a widespread and destructive disease caused by the soil-borne pathogen Verticillium dahliae (V. dahliae). To better understand the pathogenesis mechanism of V. dahliae in sunflower, T-DNA insertion library was generated via Agrobacterium tumefaciens mediated transformation system (ATMT). Eight hundred positive transformants were obtained. Transformants varied in colony morphology, growth rate, conidia production and pathogenicity in sunflower compared to the wild type strain. A mutant, named VdGn3-L2, was chosen for further analysis based on its deprivation on microsclerotia formation. The flanking sequence of T-DNA insertion site of VdGn3-L2 was identified via hiTAIL-PCR, and the interrupted gene encoded an initiation-specific α-1, 6-mannosyltransferase, named as VdOCH1. The deletion mutant ΔVdOCH1 was impaired in certain characteristics such as fungal growth, conidia production, and microsclerotia formation. Also, ΔVdOCH1 mutants were more sensitive to the cell wall perturbing reagents, such as SDS and Congo red, lost their penetration ability through cellophane membrane, and exhibited dramatically decreased pathogenicity to sunflower. The impaired phenotypes could be restored to the wild type level by complementation of the deletion mutant with full-length VdOCH1 gene. In conclusion, VdOCH1, encoded α-1,6-mannosyltransferase, manipulating the biological characteristics, microsclerotia formation and pathogenic ability of V. dahliae in sunflower.  相似文献   

9.
A glyoxalase I gene homologue (VdGLO1) was identified in the vascular wilt fungus Verticillium dahliae by sequence tag analysis of genes expressed during resting structure development. The results of the current study show that the gene encodes a putative 345 amino acid protein with high similarity to glyoxalase I, which produces S-D-lactoylglutathione from the toxic metabolic by-product methylglyoxal (MG). Disruption of the V. dahliae gene by Agrobacterium tumefaciens-mediated transformation resulted in enhanced sensitivity to MG. Mycelial growth of disruption mutants was severely reduced in the presence of 5 mmol/L MG. In contrast, spore production in liquid medium was abolished at 1 mmol/L MG, although not at physiologically relevant concentrations of 相似文献   

10.
Verticillium wilt caused by Verticillium dahliae is a serious problem of olive trees leading to significant reduction in yield. Verticillium wilt of olive trees was first recorded in Iran 1996 and confirm as due to Verticillium dahliae Kleb. 101 isolates of V. dahliae from olive trees at deferent locations in north provinces of Iran were assigned to vegetative compatibility groups (VCGS), using nitrate non-utilizing (Nit) mutants. A higher frequency of nit 1/nit 3 mutants (93%) was obtained compared with NitM (7%) with 10% of the isolates being assigned to VCG1 and 51% VCG4B and 19% VCG2A. 20% of isolates could not be classified in standard isolates. The pathogenecity of 15 randomly selected isolates (5 of each VCG) was tested on olive seedling (cv. Zard) and eggplant. The VCGs isolates were similarly aggressive on olive. However, VCG1 isolates were more aggressive on eggplant cv. Local than the VCG2A and VCG4B isolates as indicated by a higher colonization index. The pathogenecity tests of the pathogen on test plants (cotton cv. 'sahel', eggplant cv. 'local' and tomato cv. 'ps') show all isolates category in 2 pathogenecity groups defoliate and non-defoliate (with severe and mild subgroups). The morphology of V. dahliae isolates on C'zapeck's agar and water agar medium were different especially for microsclerotia appearance time in culture and their morphology.  相似文献   

11.
带有硝酸盐利用缺陷型遗传标记的大丽轮技菌Verticilliumdahliae黑色菌核型和白色菌丝型菌株在25℃下配对培养,形成野生型融合菌落带,对融合带的分生孢子后代进行遗传分析的结果表明,融合带中的异核体表现不稳定,分布不均匀。微菌核遗传因子可随亲本细胞质在异核体中的运动和交换而发生迁移。  相似文献   

12.
The vascular wilt fungus Verticillium dahliae infects the roots of cotton plants and can seriously diminish the yield and quality of this and other dicotyledons. However, the key genes involved in V. dahliae infection and pathogenesis in cotton remain unclear. Msb encodes a transmembrane mucin that is highly conserved in the MAPK signal pathway. Msb has been implicated previously in pathogenicity in various aerial plant fungi. In this study, V. dahliae Msb (VdMsb) was found to be required for fungal virulence and microsclerotia production. Strains lacking VdMsb exhibited reduced conidiation and microsclerotia formation. Compared with wild-type and gene-complemented strains, the invasive growth and adhesive capacity of VdMsb deletion mutants were significantly decreased. These results suggest that VdMsb plays a role in development and virulence in V. dahliae.  相似文献   

13.
Two cDNA libraries were constructed from cultures of the vascular wilt fungus Verticillium dahliae, grown either in simulated xylem fluid medium (SXM) or under conditions that induce near-synchronous development of microsclerotia. Expressed sequence tags (ESTs) were obtained for over 1000 clones from each library. Most sequences in the two EST collections were unique; nearly 55% of the translated ESTs had strong similarity to protein sequences in the NCBI nonredundant database. ESTs corresponding to melanin biosynthetic enzymes were exclusive to the developing microsclerotia (DMS) collection, and sequences corresponding to extracellular hydrolases (plant cell wall degrading enzymes) were more abundant in that collection. ESTs corresponding to proteins involved in transport and cell growth were more abundant in the SXM collection. The results of this preliminary analysis suggest that the in vitro growth conditions used here provide useful model systems that will facilitate studies of pathogenesis and microsclerotia development in V. dahliae.  相似文献   

14.
带有硝酸盐利用缺陷型遗传标记的大丽轮技菌Verticilliumdahliae黑色菌核型和白色菌丝型菌株在25℃下配对培养,形成野生型融合菌落带,对融合带的分生孢子后代进行遗传分析的结果表明,融合带中的异核体表现不稳定,分布不均匀。微菌核遗传因子可随亲本细胞质在异核体中的运动和交换而发生迁移。  相似文献   

15.
16.
Targeted inactivation of the valine (branched-chain amino acid) dehydrogenase gene (vdh) was used to study the role of valine catabolism in the production of tylosin in Streptomyces fradiae and spiramycin in Streptomyces ambofaciens. The deduced products of the vdh genes, cloned and sequenced from S. fradiae C373.1 and S. ambofaciens ATCC 15154, are approximately 80% identical over all 363 amino acids and 96% identical over a span of the first N-terminal 107 amino acids, respectively, to the deduced product of the Streptomyces coelicolor vdh gene. The organization of the regions flanking the vdh genes is the same in all three species. Inactivation of the genomic copy of the vdh gene in S. fradiae and S. ambofaciens by insertion of a hygromycin resistance (hyg) gene caused loss of the valine dehydrogenase (Vdh) activity, and thus only one enzyme is responsible for the Vdh activity in these organisms. Analysis of the culture broth by bioassay revealed that the vdh::hyg mutants produce an approximately sixfold-lower level of tylosin and an approximately fourfold-lower level of spiramycin than the wild-type S. fradiae and S. ambofaciens strains, while maintaining essentially identical growth in a defined minimal medium with either 25 mM ammonium ion or 0.05% asparagine as the nitrogen source. The addition of the valine catabolite, propionate or isobutyrate, and introduction of the wild-type vdh gene back to each vdh::hyg mutant reversed the negative effect of the vdh::hyg mutation on spiramycin and tylosin production. These data show that the catabolism of valine is a major source of fatty acid precursors for macrolide biosynthesis under defined growth conditions and imply that amino acid catabolism is a vital source of certain antibiotic precursors in actinomycetes.  相似文献   

17.
The Raphanus sativus L. antifungal protein 1 (Rs-AFP1) gene was isolated by polymerase chain reaction (PCR). The complete open reading frame and the fragment encoding the putative mature protein were inserted into the prokaryotic expression vector pET-32b(+), respectively. Subsequent expression showed that the Rs-AFP1 was produced in E. coli as a 27 kD fusion protein only when the N-terminal signal peptide was removed. After treatment with thrombin to remove part of the N-terminal His.tag sequence, the bacterially expressed Rs-AFP1 was used for fungal growth inhibition assay which was conducted on Verticillium dahliae Kleb., a soil-born fungus causing the cotton wilt disease. Results showed that, in the liquid medium, the Rs-AFP1 fusion protein at a concentration of 0.3 g/L clearly inhibited the growth of V. dahliae and the germination of spores. Thus the bacterially expressed fusion protein had the antifungal activity against V. dahliae.  相似文献   

18.
利用聚合酶链式反应 (PCR)获得了萝卜 (RaphanussativusL .)抗真菌蛋白 1(Rs_AFP1)基因编码区核苷酸序列。将整个阅读框架片段和去除了N_端信号肽序列的片段分别装入原核表达载体pET_32b( )中 ,在大肠杆菌中表达 ,发现带有信号肽的Rs_AFP1不能在大肠杆菌中表达 ,而当这一序列去除后 ,表达出约 2 7kD的Rs_AFP1的融合蛋白。用凝血酶处理融合蛋白以去除N_端His.tag的部分序列 ,然后用处理后的融合蛋白进行了抑制真菌生长的实验。结果表明 ,在加入 0 .3g/L的Rs_AFP1的融合蛋白的培养液中 ,大丽轮枝菌 (VerticilliumdahliaeKleb .)的生长受到抑制 ,分别比加入对照细菌蛋白和PBS下降 5 7.5 %和 6 9.8% ;孢子的萌发也受到抑制。显然 ,细菌表达的融合蛋白对大丽轮枝菌的生长有抑制作用。  相似文献   

19.
Abstract The germination of nylon net-trapped microsclerotia of Verticillium dahliae pathogenic to rape ( Brassica napus ) was assessed in different systems by fluorescence microscopy using fluorescein diacetate. The influence of the culture's age and the size of the microsclerotia on germination percentages was assessed in water, mineral salts solution and mineral salts solution plus sucrose for 3 V. dahliae isolates. Large microsclerotia germinated better than smaller ones. The microsclerotia of 2 isolates showed decreased germination percentages with culture age over a 4–11-week period. Microsclerotial germination percentages were always higher in mineral salts solution plus sucrose than in mineral salts solution alone or water. In a sand culture system with the intact rape plant, microsclerotial germination percentages were high close to the root and decreased in a steep gradient to background levels within 5 mm from the root.  相似文献   

20.
以硝酸盐利用缺陷型突变(nit突变)和抗杀菌剂突变两种遗传标记,对大丽轮枝菌(Verticilliumdahliae)异核体后代的形态和致病力进行研究,结果表明,菌核型菌株与菌丝型菌株经菌丝融合形成异核体后,菌丝型菌株能恢复形成微菌核,其后代单孢菌落形成微菌核的数量明显低于菌核型亲本,且遗传性状不稳定;随着转代次数的增多,微菌核形成能力的丧失较菌核型亲本菌株快。异核体后代对棉苗的致病力变化较大,一般均低于致病力强的亲本菌株,或介于两个亲本致病力之间,或与亲本致病力相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号