共查询到20条相似文献,搜索用时 0 毫秒
1.
The genetic basis of prezygotic reproductive isolation between Drosophila santomea and D. yakuba due to mating preference 下载免费PDF全文
Sexual isolating mechanisms that act before fertilization are often considered the most important genetic barriers leading to speciation in animals. While progress has been made toward understanding the genetic basis of the postzygotic isolating mechanisms of hybrid sterility and inviability, little is known about the genetic basis of prezygotic sexual isolation. Here, we map quantitative trait loci (QTL) contributing to prezygotic reproductive isolation between the sibling species Drosophila santomea and D. yakuba. We mapped at least three QTL affecting discrimination of D. santomea females against D. yakuba males: one X-linked and one autosomal QTL affected the likelihood of copulation, and a second X chromosome QTL affected copulation latency. Three autosomal QTL also affected mating success of D. yakuba males with D. santomea. No epistasis was detected between QTL affecting sexual isolation. The QTL do not overlap between males and females and are not disproportionately concentrated on the X chromosome. There was some overlap in map locations of QTL affecting sexual isolation between D. santomea and D. yakuba with QTL affecting sexual isolation between D. simulans and D. mauritiana and with QTL affecting differences in pigmentation between D. santomea and D. yakuba. Future high-resolution mapping and, ultimately, positional cloning, will reveal whether these traits do indeed have a common genetic basis. 相似文献
2.
Jennifer E. Blyth Daniel Lachaise†§ & Michael G. Ritchie‡ 《Ethology : formerly Zeitschrift fur Tierpsychologie》2008,114(7):728-736
The courtship song of Drosophila is useful for species recognition and sexual selection. A new species of the melanogaster group of Drosophila , D. santomea , has recently been described from the island of São Tomé in the Gulf of Guinea. We describe the courtship song of D. santomea and compare it with that of its sibling species D. yakuba . Both species have a relatively unusual song pattern for melanogaster-group species, in that they have two types of pulse song but no sine song. There are large differences in the inter-pulse interval of both types of song, but no major differences in pulse shape or intrapulse frequency between the species. The song of D. yakuba is similar in lines from the African mainland (allopatric to D. santomea ) and from São Tomé (sympatric). We test if song pattern might influence sexual isolation by examining the mating success of wingless males with homo- and hetero-specific females. We show that song pattern contributes to sexual stimulation, but the differences in song patterns alone are unlikely to explain patterns of sexual isolation such as the asymmetrical isolation seen between species. 相似文献
3.
Coyne JA Kim SY Chang AS Lachaise D Elwyn S 《Evolution; international journal of organic evolution》2002,56(12):2424-2434
Abstract.— .Drosophila yakuba is widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by a D. yakuba‐like ancestor. The species presently have overlapping ranges on the mountain Pico do São Tome, with some hybridization occurring in this region. Sexual isolation between the species is uniformly high regardless of the source of the populations, and, as in many pairs of Drosophila species, is asymmetrical, so that hybridizations occur much more readily in one direction than the other. Despite the fact that these species meet many of the conditions required for the evolution of reinforcement (the elevation of sexual isolation by natural selection to avoid maladaptive interspecific hybridization), there is no evidence that sexual isolation between the species is highest in the zone of overlap. Sexual isolation is due to evolutionary changes in both female preference for heterospecific males and in the vigor with which males court heterospecific females. Heterospecific matings are also slower to take place than are homospecific matings, constituting another possible form of reproductive isolation. Genetic studies show that, when tested with females of either species, male hybrids having a D. santomea X chromosome mate much less frequently with females of either species than do males having a D. yakuba X chromosome, suggesting that the interaction between the D. santomea X chromosome and the D. yakuba genome causes behavioral sterility. Hybrid F1 females mate readily with males of either species, so that sexual isolation in this sex is completely recessive, a phenomenon seen in other Drosophila species. There has also been significant evolutionary change in the duration of copulation between these species; this difference involves genetic changes in both sexes, with at least two genes responsible in males and at least one in females. 相似文献
4.
The study of the morphological defects unique to interspecific hybrids can reveal which developmental pathways have diverged between species. Drosophila melanogaster and D. santomea diverged more than 10 million years ago, and when crossed produce sterile adult females. Adult hybrid males are absent from all interspecific crosses. We aimed to determine the fate of these hybrid males. To do so, we tracked the development of hybrid females and males using classic genetic markers and techniques. We found that hybrid males die predominantly as embryos with severe segment‐specification defects while a large proportion of hybrid females embryos hatch and survive to adulthood. In particular, we show that most male embryos show a characteristic abdominal ablation phenotype, not observed in either parental species. This suggests that sex‐specific embryonic developmental defects eliminate hybrid males in this interspecific cross. The study of the developmental abnormalities that occur in hybrids can lead to the understanding of cryptic molecular divergence between species sharing a conserved body plan. 相似文献
5.
Quantitative trait loci affecting the difference in pigmentation between Drosophila yakuba and D. santomea 下载免费PDF全文
Using quantitative trait locus (QTL) mapping, we studied the genetic basis of the difference in pigmentation between two sister species of Drosophila: Drosophila yakuba, which, like other members of the D. melanogaster subgroup, shows heavy black pigmentation on the abdomen of males and females, and D. santomea, an endemic to the African island of S?o Tomé, which has virtually no pigmentation. Here we mapped four QTL with large effects on this interspecific difference in pigmentation: two on the X chromosome and one each on the second and third chromosomes. The same four QTL were detected in male hybrids in the backcrosses to both D. santomea and D. yakuba and in the female D. yakuba backcross hybrids. All four QTL exhibited strong epistatic interactions in male backcross hybrids, but only one pair of QTL interacted in females from the backcross to D. yabuka. All QTL from each species affected pigmentation in the same direction, consistent with adaptive evolution driven by directional natural selection. The regions delimited by the QTL included many positional candidate loci in the pigmentation pathway, including genes affecting catecholamine biosynthesis, melanization of the cuticle, and many additional pleiotropic effects. 相似文献
6.
Llopart A Elwyn S Lachaise D Coyne JA 《Evolution; international journal of organic evolution》2002,56(11):2262-2277
Abstract.— Drosophila yakuba is a species widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by its common ancestor with D. yakuba. The two species differ strikingly in pigmentation: D. santomea, unlike the other eight species in the D. melanogaster subgroup, almost completely lacks dark abdominal pigmentation. D. yakuba shows the sexually dimorphic pigmentation typical of the group: both sexes have melanic patterns on the abdomen, but males are much darker than females. A genetic analysis of this species difference using morphological markers shows that the X chromosome accounts for nearly 90% of the species difference in the area of abdomen that is pigmented and that at least three genes (one on each major chromosome) are involved in each sex. The order of chromosome effects on pigmentation area are the same in males and females, suggesting that loss of pigmentation in D. santomea may have involved the same genes in both sexes. Further genetic analysis of the interspecific difference between males in pigmentation area and intensity using molecular markers shows that at least five genes are responsible, with no single locus having an overwhelming effect on the trait. The species difference is thus oligogenic or polygenic. Different chromosomal regions from each of the two species influenced pigmentation in the same direction, suggesting that the species difference (at least in males) is due to natural or sexual selection and not genetic drift. Measurements of sexual isolation between the species in both light and dark conditions show no difference, suggesting that the pigmentation difference is not an important cue for interspecific mate discrimination. Using DNA sequence differences in nine noncoding regions, we estimate that D. santomea and D. yakuba diverged about 400,000 years ago, a time similar to the divergences between two other well‐studied pair of species in the subgroup, both of which also involved island colonization. 相似文献
7.
Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea 下载免费PDF全文
Drosophila yakuba is widely distributed in sub-Saharan Africa, while D. santomea is endemic to the volcanic island of S?o Tomé in the Atlantic Ocean, 280 km west of Gabon. On S?o Tomé, D. yakuba is found mainly in open lowland forests, and D. santomea is restricted to the wet misty forests at higher elevations. At intermediate elevations, the species form a hybrid zone where hybrids occur at a frequency of approximately 1%. To determine the extent of gene flow between these species we studied polymorphism and divergence patterns in 29 regions distributed throughout the genome, including mtDNA and three genes on the Y chromosome. This multilocus approach, together with the comparison to the two allopatric species D. mauritiana and D. sechellia, allowed us to distinguish between forces that should affect all genes and forces that should act on some genes (e.g., introgression). Our results show that D. yakuba mtDNA has replaced that of D. santomea and that there is also significant introgression for two nuclear genes, yellow and salr. The majority of genes, however, has remained distinct. These two species therefore do not form a "hybrid swarm" in which much of the genome shows substantial introgression while disruptive selection maintains distinctness for only a few traits (e.g., pigmentation and male genitalia). 相似文献
8.
McNabney DR 《Evolution; international journal of organic evolution》2012,66(7):2182-2190
Understanding how species form is a fundamental question in evolutionary biology. Identifying the genetic bases of barriers that prevent gene flow between species provides insight into how speciation occurs. Here, I analyze a poorly understood reproductive isolating barrier, prezygotic reproductive isolation. I perform a genetic analysis of prezygotic isolation between two closely related species of Drosophila, D. mauritiana and D. sechellia. I first confirm the existence of strong behavioral isolation between D. mauritiana females and D. sechellia males. Next, I examine the genetic basis of behavioral isolation by (1) scanning an existing set of introgression lines for chromosomal regions that have a large effect on isolation; and (2) mapping quantitative trait loci (QTL) that underlie behavioral isolation via backcross analysis. In particular, I map QTL that determine whether a hybrid backcross female and a D. sechellia male will mate. I identify a single significant QTL, on the X chromosome, suggesting that few major-effect loci contribute to behavioral isolation between these species. In further work, I refine the map position of the QTL to a small region of the X chromosome. 相似文献
9.
10.
A complex genetic basis to X-linked hybrid male sterility between two species of house mice 总被引:1,自引:2,他引:1 下载免费PDF全文
The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome. 相似文献
11.
We performed genetic analysis of hybrid sterility and of one morphological difference (sex-comb tooth number) on D. yakuba and D. santomea, the former species widespread in Africa and the latter endemic to the oceanic island of S?o Tomé, on which there is a hybrid zone. The sterility of hybrid males is due to at least three genes on the X chromosome and at least one on the Y, with the cytoplasm and large sections of the autosomes having no effect. F1 hybrid females carrying two X chromosomes from either species are perfectly fertile despite their genetic similarity to completely sterile F1 hybrid males. This implies that the appearance of Haldane's rule in this cross is at least partially due to the faster accumulation of genes causing male than female sterility. The larger effects of the X and Y chromosomes than of the autosomes, however, also suggest that the genes causing male sterility are recessive in hybrids. Some female sterility is also seen in interspecific crosses, but this does not occur between all strains. This is seen in pure-species females inseminated by heterospecific males (probably reflecting incompatibility between the sperm of one species and the female reproductive tract of the other) as well as in inseminated F1 and backcross females, probably reflecting genetically based incompatibilities in hybrids that affect the reproductive system. The latter 'innate' sterility appears to involve deleterious interactions between D. santomea chromosomes and D. yakuba cytoplasm. The difference in male sex-comb tooth number appears to involve fairly large effects of the X chromosome. We discuss the striking evolutionary parallels in the genetic basis of sterility, in the nature of sexual isolation, and in morphological differences between the D. santomea/D. yakuba divergence and two other speciation events in the D. melanogaster subgroup involving island colonization. 相似文献
12.
In the Drosophila melanogaster subgroup, the yakuba species complex, D. yakuba, D. santomea and D. teissieri have identical mitochondrial genomes in spite of nuclear differentiation. The first two species can be readily hybridized in the laboratory and produce fertile females and sterile males. They also form hybrids in natural conditions. Nonetheless, the third species, D. teissieri, was thought to be unable to produce hybrids with either D. yakuba or D. santomea. This in turn posed the conundrum of why the three species shared a single mitochondrial genome. In this report, we show that D. teissieri can indeed hybridize with both D. yakuba and D. santomea. The resulting female hybrids from both crosses are fertile, whereas the hybrid males are sterile. We also characterize six isolating mechanisms that might be involved in keeping the three species apart. Our results open the possibility of studying the history of introgression in the yakuba species complex and dissecting the genetic basis of interspecific differences between these three species by genetic mapping. 相似文献
13.
Interspecific hybridization provides the unique opportunity for species to tap into genetic variation present in a closely related species and potentially take advantage of beneficial alleles. It has become increasingly clear that when hybridization occurs, mitochondrial DNA (mtDNA) often crosses species boundaries, raising the possibility that it could serve as a recurrent target of natural selection and source of species' adaptations. Here we report the sequences of 46 complete mitochondrial genomes of Drosophila yakuba and Drosophila santomea, two sister species known to produce hybrids in nature (~3%). At least two independent events of mtDNA introgression are uncovered in this study, including an early invasion of the D. yakuba mitochondrial genome that fully replaced the D. santomea mtDNA native haplotypes and a more recent, ongoing event centred in the hybrid zone. Interestingly, this recent introgression event bears the signature of Darwinian natural selection, and the selective haplotype can be found at low frequency in Africa mainland populations of D. yakuba. We put forward the possibility that, because the effective population size of D. santomea is smaller than that of D. yakuba, the faster accumulation of mildly deleterious mutations associated with Muller's ratchet in the former species may have facilitated the replacement of the mutationally loaded mitochondrial genome of D. santomea by that of D. yakuba. 相似文献
14.
In Drosophila, male flies perform innate, stereotyped courtship behavior. This innate behavior evolves rapidly between fly species, and is likely to have contributed to reproductive isolation and species divergence. We currently understand little about the neurobiological and genetic mechanisms that contributed to the evolution of courtship behavior. Here we describe a novel behavioral difference between the two closely related species D. yakuba and D. santomea: the frequency of wing rowing during courtship. During courtship, D. santomea males repeatedly rotate their wing blades to face forward and then back (rowing), while D. yakuba males rarely row their wings. We found little intraspecific variation in the frequency of wing rowing for both species. We exploited multiplexed shotgun genotyping (MSG) to genotype two backcross populations with a single lane of Illumina sequencing. We performed quantitative trait locus (QTL) mapping using the ancestry information estimated by MSG and found that the species difference in wing rowing mapped to four or five genetically separable regions. We found no evidence that these loci display epistasis. The identified loci all act in the same direction and can account for most of the species difference. 相似文献
15.
Willett CS 《Genetica》2011,139(5):575-588
Deleterious interactions within the genome of hybrids can lower fitness and result in postzygotic reproductive isolation.
Understanding the genetic basis of these deleterious interactions, known as Dobzhansky-Muller incompatibilities, is the subject
of intense current study that seeks to elucidate the nature of these deleterious interactions. Hybrids from crosses of individuals
from genetically divergent populations of the intertidal copepod Tigriopus californicus provide a useful model in which to study Dobzhansky-Muller incompatibilities. Studies of the basis of postzygotic reproductive
isolation in this species have revealed a number of patterns. First, there is evidence for a breakdown in genomic coadaptation
between mtDNA-encoded and nuclear-encoded proteins that can result in a reduction in hybrid fitness in some crosses. It appears
from studies of the individual genes involved in these interactions that although this coadaptation could lead to asymmetries
between crosses, patterns of genotypic viabilities are not often consistent with simple models of genomic coadaptation. Second,
there is a large impact of environmental factors on these deleterious interactions suggesting that they are not strictly intrinsic
in nature. Temperature in particular appears to play an important role in determining the nature of these interactions. Finally,
deleterious interactions in these hybrid copepods appear to be complex in terms of the number of genetic factors that interact
to lead to reductions in hybrid fitness. This complexity may stem from three or more factors that all interact to cause a
single incompatibility or the same factor interacting with multiple other factors independently leading to multiple incompatibilities. 相似文献
16.
The genetic basis of hybrid male sterility among three closely related species, Drosophila bipectinata, D. parabipectinata and D. malerkotliana has been investigated by using backcross analysis methods. The role of Y chromosome, major hybrid sterility (MHS) genes (genetic factors) and cytoplasm (non-genetic factor) have been studied in the hybrids of these three species. In the species pair, bipectinata--parabipectinata, Y chromosome introgression of parabipectinata in the genomic background of bipectinata and the reciprocal Y chromosome introgression were unsuccessful as all males in second backcross generation were sterile. Neither MHS genes nor cytoplasm was found important for sterility. This suggests the involvement of X-Y, X-autosomes or polygenic interactions in hybrid male sterility. In bipectinata--malerkotliana and parabipectinata--malerkotliana species pairs, Y chromosome substitution in reciprocal crosses did not affect male fertility. Backcross analyses also show no involvement of MHS genes or cytoplasm in hybrid male sterility in these two species pairs. Therefore, X- autosome interaction or polygenic interaction is supposed to be involved in hybrid male sterility in these two species pairs. These findings also provide evidence that even in closely related species, genetic interactions underlying hybrid male sterility may vary. 相似文献
17.
18.
We analyzed the genetic basis of postzygotic isolation between the Bogota and USA subspecies of Drosophila pseudoobscura. These subspecies diverged very recently (perhaps as recently as 155,000 to 230,000 years ago) and are partially reproductively isolated: Bogota and USA show very little prezygotic isolation but form sterile F1 males in one direction of the hybridization. We dissected the basis of this hybrid sterility and reached four main conclusions. First, postzygotic isolation appears to involve a modest number of genes: we found large chromosome regions that have no effect on hybrid fertility. Second, although apparently few in number, the factors causing hybrid sterility show a remarkably complex pattern of epistatic interaction. Hybrids suffer no hybrid sterility until they carry the "right" allele (Bogota vs. USA) at at least four loci. We describe the complete pattern of interactions between all chromosome regions known to affect hybrid fertility. Third, hybrid sterility is caused mainly by X-autosomal incompatibilities. Fourth, hybrid sterility does not involve a maternal effect, despite earlier claims to the contrary. In general, our results suggest that fewer genes are required for the appearance of hybrid sterility than implied by previous studies of older pairs of Drosophila species. Indeed, a maximum likelihood analysis suggests that roughly 15 hybrid male steriles separate the Bogota and USA subspecies. Only a subset of these would act in F1 hybrids. 相似文献
19.
20.
Noland H. Martin John H. Willis 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1552):2469-2478
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale. 相似文献