首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spores of Chaetomium cellulolyticum were treated with 200 micrograms/ml of N-methyl-N'-nitro-N-nitrosoguanidine and seven mutants producing clear zones around their colonies on modified Vogels medium were isolated. Mutant NG7 showed altered morphological characteristics and produced more cellulases (CMCase--15 units, FPA--6.5 units, CDA--0.80 units and cellobiase--4.7 units/ml) than its parental strain (CMCase--10 units, FPA--4.5 units, CDA--0.36 units and cellobiase--2.7 units/ml). Cellulase preparation was used to saccharify rice straw, wheat straw, bagasse and sawdust, pretreated with 1% sodium hydroxide.  相似文献   

2.
Chaetomium cellulolyticum, a newly isolated cellulolytic fungus, showed 50–100% faster growth rates and over 80% more final biomass-protein formation than Trichoderma viride, a well-known high cellulase-producing cellulolytic organism, when cultivated on Solka-floc (a purified, predominantly amorphorous form of cellulose) or partially delignified sawdust (consisting of a mixture of hardwoods) as the sole-carbon source in the fermentation media. However, in both cases, T. viride produced much higher quantities of free cellulases at faster rates and also degraded more substrate than C. cellulolyticum. It is concluded that the synthesis mechanisms and/or the nature of the cellulase complexes of the two types of organisms are quite different such that C. cellulolyticum is more optimal for single-cell protein (SCP) production, while T. viride is more optimal for the production of extracellular cellulases. It was also found that the amino acid composition of C. cellulolyticum is generally better than that of T. viride and compares favorably with those of the FAO reference protein, alfalfa, and soya meal. In addition, preliminary feeding trials on rats have shown no adverse effects of the SCP produced by C. cellulolyticum fermentations.  相似文献   

3.
Summary Hydrolyses of cellulosics by crude enzyme yielded glucose, cellobiose, and cellobionic acid. A cellobiose oxidizing enzyme was detected in culture broth of Chaetomium cellulolyticum and identified as a cellobiose dehydrogenase.  相似文献   

4.
5.
Solid-state fermentations (78% initial moisture content) of alkali-pretreated Eastern Hard Maple sawdust were conducted in tray and tumble fermentors using chaetomium cellulolyticum. Crude protein content of the solids rose from 0.9 to 11% in the tray fermentor and 8% in the tumble fermentor in 20 days. These levels were almost equal to those achieved in corresponding slurry-state fermentations (1–5% (w/v)) of the same substrate. Specific growth rates were two to four times lower in the solid-state fermentors but this was offset by their greater solids-handling capacity: the rate of protein production per unit volume of fermentation mixture was comparable to that of the 5% (w/v) slurry and two to three times higher than that of the 1% (w/v) slurry.  相似文献   

6.
Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon consumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellodextrin, and with pure cellulose, as a carbon source more closely related to lignocellulosic compounds, strengthen the idea of a bacterium particularly well adapted, and even restricted, to a cellulolytic lifestyle. The metabolic flux analysis from continuous cultures revealed that (i) in comparison to cellobiose, the cellulose hydrolysis by the cellulosome introduces an extra regulation of entering carbon flow resulting in globally lower metabolic fluxes on cellulose than on cellobiose, (ii) the glucose 1-phosphate/glucose 6-phosphate branch point controls the carbon flow directed towards glycolysis and dissipates carbon excess towards the formation of cellodextrins, glycogen and exopolysaccharides, (iii) the pyruvate/acetyl-CoA metabolic node is essential to the regulation of electronic and energetic fluxes. This in-depth analysis of C. cellulolyticum metabolism has permitted the first attempt to engineer metabolically a cellulolytic microorganism.  相似文献   

7.
8.
Cellulolytic clostridia have evolved to catabolize lignocellulosic materials at a seasonal biorhythm, so their biotechnological exploitation requires genetic improvements. As high carbon flux leads to pyruvate accumulation, which is responsible for the cessation of growth of Clostridium cellulolyticum, this accumulation is decreased by heterologous expression of pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. In comparison with that of the wild strain, growth of the recombinant strain at the same specific rate but for 145 h instead of 80 h led to a 150% increase in cellulose consumption and a 180% increase in cell dry weight. The fermentation pattern was shifted significantly: lactate production decreased by 48%, whereas the concentrations of acetate and ethanol increased by 93 and 53%, respectively. This study demonstrates that the fermentation of cellulose, the most abundant and renewable polymer on earth, can be greatly improved by using genetically engineered C. cellulolyticum.  相似文献   

9.
10.
The treatment of a hardwood sawdust with 1% NaOH solution at 121°C dissolved 19.7% of the dry matter, mainly hemicellulose and lignin. Fermentation of the treated solids by Chaetomium cellulolyticum for 48 h gave a product containing 12.5% crude protein (total N × 6.25) on a dry weight basis. The in vitro rumen digestibility of the 48-h fermentation product was 30%, compared to 24% for the alkali-treated but unfermented sawdust. Growth was independent of sawdust particle size in the range 40 to 100 mesh. Fermentation of the pretreatment liquor gave a product containing up to 50% crude protein (dry weight basis) with an in vitro rumen digestibility of 65 to 76%. Approximately 6.7 g of crude protein was obtained from the treated solids and 2.2 g from the pretreatment liquor per 100 g of sawdust treated. The product from the pretreatment liquor fermentation has potential as a high-protein animal feed supplement but could not be produced economically without an outlet for the relatively indigestible product from the solids fermentation. Growth on the pretreatment liquor was strongly pH dependent; there was a considerable increase in the lag phase when the pH was lowered from 7.5 to 5.2. This effect appears to be due to an inhibitor whose toxicity is reduced at high pH.  相似文献   

11.
The growth behavior of Chaetomium cellulolyticum, a new cellulolytic fungus, has been examined in slurry fermentation systems using various chemically pretreated sawdusts from hardwoods as substrates. Both acid- and alkali-pretreatment methods were used and the fermentation media included the spent pretreatment liquor in an attempt to concurrently maximize substrate utilization and minimize the biological oxygen demand (BOD) level in the process effluent. Diauxic growth patterns were found in the three cases studied, suggesting an initial utilization of soluble hemicellulose sugars followed by utilization of the insoluble cellulose. This behavior patterns was supported by separate growth experiments using the major sugars of hemicellulose as carbon sources. The organism was found to be a good convertor of both cellulose and hemicelluloses into single cell protein (SCP). In terms of rate and extent of protein production in the insoluble biomass product, acid pretreatment appears to be better than alkali pretreatment if the product is intended as ruminant feed.  相似文献   

12.
Summary Fermentation with Chaetomium cellulolyticum was carried out on media containing either Avicel cellulose or newspaper. Production of free cellulolytic enzymes, cellulose degradation and the formation of cell protein were studied with the original strain and a mutant strain.  相似文献   

13.
Four major components of the cellulase complex of Chaetomium cellulolyticum have been isolated by gel-filtration, ion-exchange chromatography on DEAE-Toyopearl and Macro Prep Q, and chromatofocusing on Mono P. These components include three endoglucanases (19, 35, and 40 kD) and a cellobiohydrolase (45 kD). The isoelectric points of the enzymes vary from 3.8 to 4.2. The optimal pH values for catalytic activity are in the range 4.5-6.0, and the optimal temperatures are in the range 60-70 degrees C. Of these enzymes the 19 kD endoglucanase is the most stable; it retained high activity within a broad pH range (from 5.0 to 9.6) at 50 degrees C for 3 h. This enzyme also had the highest topolytic activity determined by the efficiency of removal of indigo from the surface of cotton.  相似文献   

14.
Summary The cellulolytic enzymes of various strains of the brown-rot fungus Coniophora puteana were studied. The organism was grown in an air-lift fermentor in mineral medium containing glucose, cellobiose or amorphous cellulose. The specific growth rate varied between 0.082 and 0.062 h–1. On amorphous cellulose as sole carbon source, the organism secreted various proteins, some of which were characterized. The mixture contained inter alia four endocellulases, two exo-cellobiohydrolases and a cellobiose dehydrogenase. Three endocellulases (named type I) were active on soluble cellulose derivatives but inactive on p-nitrophenyllactoside (p-NPL), whereas a fourth endocellulase (named type II) was active on both. The two exo-cellobiohydrolases released cellobiose from amorphous cellulose; they were inactive on soluble cellulose derivatives but hydrolyzed p-NPL with strong cellobiose inhibition. A cellobiose dehydrogenase having spectral characteristics compatible with a flavo b-cytochrome was also identified. Neither the exo-cellobiohydrolase nor the type II endocellulase were secreted during growth on cellobiose whereas type I endocellulases and cellobiose dehydrogenase were formed at a reduced rate. No formation of cellulolytic enzymes was observed during growth on glucose alone. Correspondence to: G. Canevascini  相似文献   

15.
Relatively poor SCP production (4.2 mg/L h) was obtained using C. cellulolyticum and ground aspen wood treated with steam at atmospheric pressure for 1 h. The percentage of protein in the final product increased to 21.4% at a specific growth rate of 0.15 h?1 when the wood sample was treated with steam at a higher pressure (280 psig for 4 min) according to the "Stake" process. Alkali treatment (10% and 15% w/w at 121°C for 30 min), known to solubilize hemicelluloses and some of the lignin, gave intermediate results. More complete delignification of wood using NaClO2 increased the protein composition in the final product to 37.9%, at a specific growth rate of 0.19 h?1. Cellulose utilization was lowest (12.4%) in the case of the wood treated with steam at atmospheric pressure; it was higher at 75.3 and 78.5% for wood treated with NaOH at 10 and 15% w/w levels, respectively. The cellulose utilization was highest (90%) for wood treated with NaClO2.  相似文献   

16.
Swine manure has a very high pollution potential and obnoxious odor. Large farms particularly are confronted with a manure disposal problem since environmentally acceptable solutions are now required by government regulations. Swine manure was found to be a good source of supplementary nutrients to ferment wheat straw into single-cell protein (SCP) with Chaetomium cellulolyticum when 0.13g (NH4)2SO4/g solid was used as an additional source of N. In batch fermentations, inhibitory effects, possibly due to soluble released from the straw during alkali or acid pretreatment, were overcome by starting the fermentation at about pH 7.0 and then reducing it to 5.0 during growth. An overall protein productivity of up to 66 mg/L h was obtained from a slurry mixture of 1% w/v solids of manure and straw. This compares favorably with 99 mg/L h when manure was fermented with glucose instead of straw as the main carbon source. A high protein productivity of 200 mg/L h was obtained from a slurry mixture containing anaerobically prefermented swine manure liquor and 1.5% w/v solids from straw. The final products of the manure and straw fermentations contained 25–30% DW crude protein and 6–20% DW cellulose and the materials were free of the original obnoxious odor and undesirable microbial contamination.  相似文献   

17.
Abstract The cellulolytic enzyme complex from Clostridium thermocellum JW 20 was purified from the cellulose to which the enzyme was bound during growth. After centrifugation and gel filtration the enzyme complex was analyzed by SDS-PAGE. Three subunits with apparent molecular weights of 195 000 Da, 97 000 Da and 72 000 Da were purified by preparative SDS-PAGE and electroelution. Polyclonal antibodies directed against these three subunits were raised in rabbits. The specificity of the antisera was tested with immunochemical methods. Cross reactions with other subunits of the cellulase complex were observed. Immunoelectron microscopy of protein-A gold labeled, resin embedded cells indicated that the three types of subunits were located in the outer region of the cytoplasm and on structures at the outside of the cell wall.  相似文献   

18.
Properties of cellulolytic enzyme systems   总被引:16,自引:0,他引:16  
  相似文献   

19.
Clostridium thermocellum, strain JW20 (ATCC 31449) when growing in cellulose produces a cellulolytic enzyme system, that at the early stage of the fermentation is largely bound to the substrate. As cellulose is consumed the bound enzyme is released as free enzyme to the culture fluid. The bound enzyme fraction extracted with distilled water from the cellulose contains two major components, a large complex (Mr100×106) and a small complex Mr4.5×106) which were separated by gel filtration and sucrose solved by affinity chromatography into a complex that binds to the column and into a non-bindable mixture of proteins. All four fractions have endo--glucanase activity but only the two bound complexes and the free bindable complex hydrolyze crystalline cellulose with cellobiose as the main product. These three complexes are qualitatively similar in that they each contain about 20 different polypeptides (Mr values from 45,000 to 200,000) of which about ten are major components. However, the relative amounts of some of the peptides in the complexes differ. At least four polypeptides of the complexes have endo--glucanase activity.Abbreviations CM cellulose, carboxymethyl cellulose - CMCase carboxymethyl cellulase cosidered endo--1,4-glucanase - SDS sodium dodecyl sulfate - YAS yellow affinity substance - YAS-cellulose yellow affinity substance-cellulose complex  相似文献   

20.
The enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum grown on crystalline cellulose as a sole carbon and energy source was explored by two-dimensional electrophoresis. The cellulolytic system of C. cellulolyticum is composed of at least 30 dockerin-containing proteins (designated cellulosomal proteins) and 30 noncellulosomal components. Most of the known cellulosomal proteins, including CipC, Cel48F, Cel8C, Cel9G, Cel9E, Man5K, Cel9M, and Cel5A, were identified by using two-dimensional Western blot analysis with specific antibodies, whereas Cel5N, Cel9J, and Cel44O were identified by using N-terminal sequencing. Unknown enzymes having carboxymethyl cellulase or xylanase activities were detected by zymogram analysis of two-dimensional gels. Some of these enzymes were identified by N-terminal sequencing as homologs of proteins listed in the NCBI database. Using Trap-Dock PCR and DNA walking, seven genes encoding new dockerin-containing proteins were cloned and sequenced. Some of these genes are clustered. Enzymes encoded by these genes belong to glycoside hydrolase families GH2, GH9, GH10, GH26, GH27, and GH59. Except for members of family GH9, which contains only cellulases, the new modular glycoside hydrolases discovered in this work could be involved in the degradation of different hemicellulosic substrates, such as xylan or galactomannan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号