首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

We have shown previously that AtoSC two-component system regulates the biosynthesis of E. coli cPHB [complexed poly-(R)-3-hydroxybutyrate].

Methods

The AtoSC involvement on fatty acids metabolism, towards cPHB synthesis, was studied using cPHB determination, gene expression, and fatty acid metabolic pathways inhibitors.

Results

Deletion of the atoDAEB operon from the E. coli genome resulted in a consistent reduction of cPHB accumulation. When in ΔatoDAEB cells, the atoDAEB operon and the AtoSC system were introduced extrachromosomally, a significant enhancement of cPHB levels was observed. Moreover, the introduction of a plasmid with atoSC genes regulated positively cPHB biosynthesis. A lesser cPHB enhancement was triggered when plasmids carrying either atoS or atoC were introduced. The intracellular distribution of cPHB was regulated by AtoSC or AtoC according to the inducer (acetoacetate or spermidine). Blockage of β-oxidation by acrylic acid reduced cPHB levels, suggesting the involvement of this pathway in cPHB synthesis; however, the overproduction of AtoSC or its constituents separately resulted in cPHB enhancement. Inhibition of fatty acid biosynthesis by cerulenin resulted to a major cPHB reduction, indicating the contribution of this pathway in cPHB production. Inhibition of both β-oxidation and fatty acid biosynthesis reduced dramatically cPHB, suggesting the contribution of both pathways in cPHB biosynthesis.

Conclusions

Short fatty acid catabolism (atoDAEB operon) and fatty acids metabolic pathways participate in cPHB synthesis through the involvement of AtoSC system.

General significance

The involvement of the AtoSC system in the fatty acids metabolic pathways interplay towards cPHB biosynthesis provides additional perceptions of AtoSC role on E. coli regulatory biochemical processes.  相似文献   

2.
The AtoS–AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS–AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5–4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS–atoC locus (ΔatoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the ΔatoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS–AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS–AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.  相似文献   

3.
Recent analysis revealed that, in Escherichia coli the AtoS–AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS–AtoC/Az TCS, without altering their protein levels. However, bacteria that overproduce either AtoS or AtoC did not display this phenotype. The extrachromosomal introduction of AtoS–AtoC/Az in an E. coli ΔatoSC strain restored cPHB biosynthesis to the level of the atoSC+ cells, in the presence of the polyamine. Lack of enhanced cPHB production was observed in cells overproducing the TCS that did not have the atoDAEB operon. Spermidine attained the cPHB enhancement through the AtoC/Az response regulator phosphorylation, since atoC phosphorylation site mutants, which overproduce AtoS, accumulated less amounts of cPHB, compared to their wild-type counterparts. Exogenous addition of N8-acetyl-spermidine resulted in elevated amounts of cPHB but at lower levels than those attained upon spermidine addition. Furthermore, AtoS–AtoC/Az altered the intracellular distribution of cPHB according to the inducer recognized by the TCS. Overall, AtoS–AtoC/Az TCS was induced by spermidine to regulate both the biosynthesis and the intracellular distribution of cPHB in E. coli.  相似文献   

4.
AtoSC two-component system (TCS) upregulates the high-molecular weight poly-(R)-3-hydroxybutyrate (PHB) biosynthesis in recombinant phaCAB + Escherichia coli strains, with the Cupriavidus necator phaCAB operon. We report here that AtoSC upregulates also the copolymer P(3HB-co-3HV) biosynthesis in phaCAB + E. coli. Acetoacetate-induced AtoSC maximized P(3HB-co-3HV) to 1.27 g/l with a 3HV fraction of 25.5 % wt. and biopolymer content of 75 % w/w in a time-dependent process. The atoSC locus deletion in the ?atoSC strains resulted in 4.5-fold P(3HB-co-3HV) reduction, while the 3HV fraction of the copolymer was restricted to only 6.4 % wt. The ?atoSC phenotype was restored by extrachromosomal introduction of AtoSC. Deletion of the atoDAEB operon triggered a significant decrease in P(3HB-co-3HV) synthesis and 3HV content in ?atoDAEB strains. However, the acetoacetate-induced AtoSC in those strains increased P(3HB-co-3HV) to 0.8 g/l with 21 % 3HV, while AtoC or AtoS expression increased P(3HB-co-3HV) synthesis 3.6- or 2.4-fold, respectively, upon acetoacetate. Complementation of the ?atoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. Individual inhibition of β-oxidation and mainly fatty acid biosynthesis pathways by acrylic acid or cerulenin, respectively, reduced P(3HB-co-3HV) biosynthesis. Under those conditions, introduction of atoSC or atoSCDAEB regulon was capable of upregulating biopolymer accumulation. Concurrent inhibition of both the fatty acid metabolic pathways eliminated P(3HB-co-3HV) production. P(3HB-co-3HV) upregulation in phaCAB + E. coli by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards biotechnologically improved polyhydroxyalkanoates biosynthesis.  相似文献   

5.
AtoSC two-component system participates in many indispensable processes of Escherichia coli. We report here that the AtoSC signal transduction is inhibited by established histidine kinase inhibitors. Closantel, RWJ-49815 and TNP-ATP belonging to different chemical classes of inhibitors, abrogated the in vitro AtoS kinase autophosphorylation. However, when AtoS was embedded in the membrane fractions, higher inhibitor concentrations were required for total inhibition. When AtoS interacted with AtoC forming complex, the intrinsic histidine kinase was protected by the response regulator, requiring increased inhibitors concentrations for partially AtoS autophosphorylation reduction. The inhibitors exerted an additional function on AtoSC, blocking the phosphotransfer from AtoS to AtoC, without however, affecting AtoC~P dephosphorylation. Their in vivo consequences through the AtoSC inhibition were elucidated on atoDAEB operon expression, which was inhibited only in AtoSC-expressing bacteria where AtoSC was induced by acetoacetate or spermidine. The inhibitor effects were extended on the AtoSC regulatory role on cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis. cPHB was decreased upon the blockers only in acetoacetate-induced AtoSC-expressing cells. Increased ATP amounts during bacterial growth reversed the inhibitory TNP-ATP-mediated effect on cPHB. The alteration of pivotal E. coli processes as an outcome of AtoSC inhibition, establish this system as a target of two-component systems inhibitors.  相似文献   

6.
7.
8.
Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS–AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E. coli. Evidence is presented to show that AtoS is a sensor kinase that together with AtoC constitutes a two-component signal transduction system. AtoS is a membrane protein which can autophosphorylate and then transfer that phosphoryl group to AtoC. This process can also be reproduced in vitro. AtoC contains in its amino acid sequence a conserved aspartic acid (D55), which is the putative phosphorylation site, as well as an unexpected “H box” consensus sequence (SHETRTPV), common to histidine kinases, with the histidine contained therein (H73) being a second potential target for phosphorylation. Substitution of either D55 or H73 in His10–AtoC diminished but did not abrogate AtoC phosphorylation suggesting that either both residues can be phosphorylated independently or that the phosphate group can be transferred between them. However, the D55 mutation in comparison to H73 had a more pronounced effect in vivo, on the activation of atoDAEB promoter after acetoacetate induction, although it was the presence of both mutations that rendered AtoC totally unresponsive to induction. These data provide evidence that the gene products of atoS and atoC constitute a two-component signal transduction system, with some unusual properties, involved in the regulation of the atoDAEB operon.  相似文献   

9.
AtoSC two-component system plays a pivotal role in many regulatory indispensable Escherichia coli processes. AtoSCDAEB regulon, comprising the AtoSC system and the atoDAEB operon, regulates the short-chain fatty acids catabolism. We report here, that AtoSC up-regulates the high-molecular weight PHB biosynthesis, in recombinant phaCAB(+)E. coli, with the Cupriavidus necator phaCAB operon. PHB accumulation was maximized upon the acetoacetate-mediated induction of AtoSC, under glucose 1% w/v, resulting in a yield of 1.73 g/l with a biopolymer content of 64.5% w/w. The deletion of the atoSC locus, in the ΔatoSC strains, resulted in a 5 fold reduction of PHB accumulation, which was restored by the extrachromosomal introduction of the AtoSC system. The deletion of the atoDAEB operon triggered a significant decrease in PHB synthesis in ΔatoDAEB strains. However, the acetoacetate-induced AtoSC system in those strains increased PHB to 1.55 g/l, while AtoC expression increased PHB to 1.4 g/l upon acetoacetate. The complementation of the ΔatoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. The individual inhibition of β-oxidation and mainly fatty-acid biosynthesis pathways by acrylic acid or cerulenin respectively, reduced PHB biosynthesis. Under those conditions the introduction of the atoSC locus or the atoSCDAEB regulon was capable to up-regulate the biopolymer accumulation. The concurrent inhibition of both the fatty acids metabolic pathways eliminated PHB production. PHB up-regulation in phaCAB(+)E. coli, by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay, provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards the biotechnologically improved polyhydroxyalkanoates biosynthesis.  相似文献   

10.
The AtoS-AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS-AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5-4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS-atoC locus (delta atoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the delta atoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS-AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS-AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.  相似文献   

11.
Recent analysis revealed that, in Escherichia coli the AtoS-AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS-AtoC/Az TCS, without altering their protein levels. However, bacteria that overproduce either AtoS or AtoC did not display this phenotype. The extrachromosomal introduction of AtoS-AtoC/Az in an E. coli DeltaatoSC strain restored cPHB biosynthesis to the level of the atoSC(+) cells, in the presence of the polyamine. Lack of enhanced cPHB production was observed in cells overproducing the TCS that did not have the atoDAEB operon. Spermidine attained the cPHB enhancement through the AtoC/Az response regulator phosphorylation, since atoC phosphorylation site mutants, which overproduce AtoS, accumulated less amounts of cPHB, compared to their wild-type counterparts. Exogenous addition of N(8)-acetyl-spermidine resulted in elevated amounts of cPHB but at lower levels than those attained upon spermidine addition. Furthermore, AtoS-AtoC/Az altered the intracellular distribution of cPHB according to the inducer recognized by the TCS. Overall, AtoS-AtoC/Az TCS was induced by spermidine to regulate both the biosynthesis and the intracellular distribution of cPHB in E. coli.  相似文献   

12.
The Escherichia coli AtoS–AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Η-box since AtoS carrying a mutation at this site failed to phosphorylate. This inability to phosphorylate was not due to gross structural alterations of AtoS since the H398L mutant retained its capability to bind ATP. Furthermore, the H398L mutant AtoS was competent to catalyze the trans-phosphorylation of an AtoS G-box (G565A) mutant protein which otherwise failed to autophosphorylate due to its inability to bind ATP. The formation of homodimers between the various AtoS proteins was also shown by cross-linking experiments both in vitro and in vivo.  相似文献   

13.
The AtoS–AtoC two-component signal transduction system positively regulates the expression of the atoDAEB operon in Escherichia coli. Upon acetoacetate induction, AtoS sensor kinase autophosphorylates and subsequently phosphorylates, thereby activating, the response regulator AtoC. In a previous work we have shown that AtoC is phosphorylated at both aspartate 55 and histidine73. In this study, based on known three-dimensional structures of other two component regulatory systems, we modeled the 3D-structure of the receiver domain of AtoC in complex with the putative dimerization/autophosphorylation domain of the AtoS sensor kinase. The produced structural model indicated that aspartate 55, but not histidine 73, of AtoC is in close proximity to the conserved, putative phosphate-donor, histidine (H398) of AtoS suggesting that aspartate 55 may be directly involved in the AtoS–AtoC phosphate transfer. Subsequent biochemical studies with purified recombinant proteins showed that AtoC mutants with alterations of aspartate 55, but not histidine 73, were unable to participate in the AtoS–AtoC phosphate transfer in support of the modeling prediction. In addition, these AtoC mutants displayed reduced DNA-dependent ATPase activity, although their ability to bind their target DNA sequences in a sequence-specific manner was found to be unaltered.  相似文献   

14.
15.
16.
17.
18.
Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS-AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E. coli. Evidence is presented to show that AtoS is a sensor kinase that together with AtoC constitutes a two-component signal transduction system. AtoS is a membrane protein which can autophosphorylate and then transfer that phosphoryl group to AtoC. This process can also be reproduced in vitro. AtoC contains in its amino acid sequence a conserved aspartic acid (D55), which is the putative phosphorylation site, as well as an unexpected "H box" consensus sequence (SHETRTPV), common to histidine kinases, with the histidine contained therein (H73) being a second potential target for phosphorylation. Substitution of either D55 or H73 in His10-AtoC diminished but did not abrogate AtoC phosphorylation suggesting that either both residues can be phosphorylated independently or that the phosphate group can be transferred between them. However, the D55 mutation in comparison to H73 had a more pronounced effect in vivo, on the activation of atoDAEB promoter after acetoacetate induction, although it was the presence of both mutations that rendered AtoC totally unresponsive to induction. These data provide evidence that the gene products of atoS and atoC constitute a two-component signal transduction system, with some unusual properties, involved in the regulation of the atoDAEB operon.  相似文献   

19.
20.

Background  

The KdpD/KdpE two-component system of Escherichia coli regulates expression of the kdpFABC operon encoding the high affinity K+ transport system KdpFABC. The input domain of KdpD comprises a domain that belongs to the family of universal stress proteins (Usp). It has been previously demonstrated that UspC binds to this domain, resulting in KdpD/KdpE scaffolding under salt stress. However the mechanistic significance of this domain for signaling remains unclear. Here, we employed a "domain swapping" approach to replace the KdpD-Usp domain with four homologous domains or with the six soluble Usp proteins of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号