首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
Previous studies in this laboratory have shown that benzo(a)pyrene (BaP) modulates protein kinase C (PKC)-mediated phosphorylation of aortic smooth muscle cell (SMC) proteins. This observation is consistent with the ability of other aromatic hydrocarbons (AHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to modulate kinase activities in cells of hepatic, testicular, and thymic origin. Because all these chemicals share the ability to bind the aryl hydrocarbon receptor (AhR), the present studies were conducted to determine if changes in PKC activity by AHs conform with established structure-activity relationships. Experiments were conducted to examine the effects of TCDD, 2,3,7,8-tetrachlorodibenzofuran (TCDF), and 2,8-dichlorodibenzodioxin (DCDD) on the phosphorylation of exogenous histone type-III under basal and PKC-activating conditions. These congeners exhibit both high (TCDD and TCDF) and low (DCDD) AhR agonist activities. Measurements of kinase activity were conducted in the cytosolic and particulate fractions of growth-arrested (i.e., serum-deprived) cultured rat aortic SMCs incubated with 10 nM TCDD, TCDF, and DCDD for 0.5, 12, or 24 hours. No changes in basal kinase activity were induced by these chemicals at any of the times tested. Significant decreases in cytosolic and particulate PKC activity relative to controls were observed upon exposure of SMCs for 0.5 hours to 10 nM TCDD, TCDF, and DCDD. In contrast, SMCs exposed to TCDD and TCDF for 12 hours exhibited a significant increase in PKC activity in both cytosolic and particulate fractions. The PKC activity in cells exposed to DCDD for 12 hours was not altered. Prolonged exposure of SMCs to 10 nM TCDD, TCDF, and DCDD for 24 hours decreased PKC activity in the cytosolic fraction, while only TCDD and TCDF decreased particulate PKC activity. These data show that PKC activity is modulated differentially as a function of time in SMCs exposed to TCDD and related compounds. Collectively, the patterns of histone phosphorylation induced by these chemicals in rat aortic SMCs suggest that modulation of C-kinase activity involves both receptor-independent and receptor-related events.  相似文献   

2.
We investigated the effects of human interferon(IFN)-beta and -gamma on protein kinase C activity in human HEp-2 and KHm-14 tumor cells during IFN-induced inhibition of cell growth. Cytosolic protein kinase C activity in both cell lines was strikingly decreased following treatment with either IFN-beta or -gamma. In the particulate fraction, IFN-gamma decreased protein kinase C activity within 1 hr but it reappeared after 24 hr, whereas IFN-beta decreased the activity during the inhibition of cell growth. Furthermore, phorbol-12,13-dibutyrate(PDBu)-binding activity was altered in parallel with the changes in protein kinase C activity induced by the IFNs. In summary, we showed that IFN-beta and -gamma cause long-term modulation of protein kinase C activity in these cultured tumor cells.  相似文献   

3.
A dose-dependent increase in tyrosine phosphorylation of five hepatic intracellular proteins with approximate molecular weights of 17, 21, 27, 29, and 34 kDa was seen 24 h after administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to C57BL/6J female mice. The ED50 values for tyrosylphosphorylation of these five proteins, respectively, were 0.26, 0.21, 0.26, 0.31, and 0.38 micrograms TCDD/Kg. TCDD induction of 7-ethoxyresorufin O-deethylase activity (EROD) was characterized by an ED50 of 2.5 micrograms/Kg. An eighteen h exposure of a human lymphoblastoma cell line (X3) to TCDD increased tyrosylphosphorylation status of ten proteins with approximate molecular weights of 16, 17, 24, 26, 27, 32, 33, 34, 35, and 36 kDa in a dose-dependent manner. The EC50 values for these TCDD-dependent tyrosylphosphorylation ranged from 0.01 to 0.07 nM TCDD. EROD induction by TCDD in X3 cells exhibited an EC50 of 0.14 nM. These data indicate that TCDD alters intracellular protein tyrosine phosphorylation and these changes are more sensitive biological indicators of TCDD exposure than induction of EROD.  相似文献   

4.
Treatment of murine spleen cells with 30 nM TCDD resulted in an approximately 3 fold increase in unstimulated antibody production after 3 days in culture. This response was not accompanied by increased cellular proliferation and may represent an effect of TCDD on B cell activation or differentiation. Since PMA is capable of activating B cells, presumably via PKC, we have compared the effects of PMA and TCDD on protein kinase activation and phosphorylation of endogenous proteins in a highly purified preparation of B cells. In contrast to a reduction of cytosolic PKC activity, the expected effect of PMA, TCDD caused an increase in basal kinase activity with no effect on PKC activity. Addition of either PMA or TCDD resulted in enhanced phosphorylation of a similar profile of proteins, including proteins of Mr 12.2, 14.6, 29.2, 52.3 and 62.7 KDa. Addition of TCDD also resulted in the increased phosphorylation of a protein of Mr 45.2, which was unaffected by PMA. Combined treatment with PMA and TCDD resulted in additive responses. The additive effects of PMA and TCDD suggest an interaction at the level of protein phosphorylation which is mediated by different kinases. Therefore, TCDD may be stimulating B cells via an early effect on an unidentified protein kinase.  相似文献   

5.
6.
Exposure of MCF-7 human breast cancer cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to the inhibition of cell proliferation. We investigate here the short-term effects of TPA on subcellular distribution of protein kinase C, and on protein phosphorylation in cultured MCF-7 cells. We report a rapid and dramatic decrease in cytosolic protein kinase C activity after TPA treatment. Only 30% of the enzymatic activity lost in the cytosol was recovered in the particulate fraction. These data suggest that subcellular translocation of protein kinase C is accompanied by a rapid down-regulation of the enzyme (70%). Furthermore, TPA and other protein kinase C activators rapidly induce the phosphorylation of a 28 kDa protein in intact MCF-7 cells. Phorbol esters devoid of tumor-promoting activity are ineffective both for inducing these early biochemical events and for inhibiting cell proliferation.  相似文献   

7.
The cell specific induction of uridine diphosphate(UDP)-glucuronyltransferase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in intestinal epithelium was studied by administering [14C] TCDD (8 microgram/kg to adult female rats). Intact epithelial cells from the tip and crypt regions were isolated by differential vibration of rat duodenum. Cell separation was monitored by electron microscopy and marker enzymes. UDP-glucuronyltransferase and radioactivity were assayed in both cell types 0 h, 3 h, 10 h, 1 day, 3 days and 5 days after treatment. UDP-glucuronyltransferase activities were not significantly changed in either cell type isolated from TCDD-treated rats until 24 hr after treatment when a three-fold increase in crypt cell activity was evident. No significant changes in UDP-glucuronyltransferase activity were observed in the differentiated tip cells until 3 days after TCDD treatment. UDP-glucuronyltransferase was increased approximately two-fold in both cell types from 3 and 5 days following TCDD treatment. There was a negative correlation between the time-course of UDP-glucuronyltransferase induction and the [14C]TCDD concentrations measured in these cells. These studies suggest that the undifferentiated cells of the intestinal crypt region are more sensitive to TCDD inductive actions than are the absorptive tip cells.  相似文献   

8.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

9.
Summary Ectoderm explants from early gastrula stages of Xenopus laevis were induced with a neutralizing factor. The factor was isolated from Xenopus gastrulae and partially purified by chromatography on DEAE cellulose. The ectoderm was cultured for different periods of time and then homogenized. Protein kinase activity was determined in the homogenates from induced and control explants with histone H 1 or C-terminal peptide derived from histone H 1 as substrates. The C-terminal peptide is a more specific substrate for protein kinase C, whereas histoneH 1 is a substrate for cAMP/cGMP-dependent protein kinases as well protein kinase C. With both substrates the enzyme activity increases after induction. With the C-terminal peptide as the substrate the protein kinase activity is lower, but its relative increase after induction higher. This suggests that besides cAMP/cGMP dependent protein kinases protein kinase C or related enzymes are involved in the neural induction and differentiation processes. This corresponds to previous experiments which have shown that treatment of ectoderm with phorbol myristate acetate, an activator of protein kinase C and protein kinase C related enzymes, initiates neural differentiation. Endogeneous substrates, which are more intensively phosphorylated after induction are proteins with apparent molecular weights 21 kDa and 31 kDa. Addition of protein kinase C to the induced and control homogenates abolishes the difference in the phosphorylation rate of these proteins.  相似文献   

10.
These studies were designed to test the hypothesis that changes in intracellular Ca2+ levels and activation of the calcium ion- and phospholipid-dependent protein kinase C were required for the induction of macrophage tumoricidal activity by interferon-gamma (IFN-gamma). Phenothiazines and R24571, known antagonists of calcium-binding proteins and therefore nonspecific inhibitors of protein kinase C, blocked in a dose-dependent manner the induction of macrophage cytocidal activity by either natural or recombinant IFN-gamma. Macrophages depleted of intracellular Ca2+ by chelation with Quin 2, were also unresponsive to IFN-gamma. These treatments effected neither the binding of IFN-gamma to its cell surface receptor nor the normal intracellular processing of IFN-gamma. Activators of protein kinase C (such as phorbol esters) and Ca2+ ionophores when added alone did not effect the activation state of the macrophage population. However, macrophages exposed to both drugs in combination were elevated into the primed activation state such that in the presence of a second signal (lipopolysaccharide or heat killed Listeria monocytogenes), the cells were triggered to express full levels of tumoricidal activity. The capacity of phorbol esters to induce cellular activation correlated with their ability to bind and to activate protein kinase C. No synergistic effect was observed between IFN-gamma and protein kinase C activators and/or Ca2+ ionophores, indicating that the drugs could only prime and could not trigger macrophages for tumor cell killing. These results thus support the concept that protein kinase C activation and mobilization of intracellular Ca2+ are essential steps in the pathway of IFN-gamma-dependent induction of non-specific tumoricidal activity in macrophages.  相似文献   

11.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

12.
Embryonic stem (ES) cells have features that resemble the pluripotent cells of peri-implantation embryos and have been used as an in vitro model to assess the effects of test substances on these stages of development. Here, for the first time, we report on the effects of the xenobiotic 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) on mouse ES cells cultured with TCDD at concentrations ranging from 0.0001 to 100 nM for 15 min to 48 h. TCDD effects were determined by analysing the induction of Cyp1A1, Cyp1A2, Cyp1B1 (phase I) and Nqo1, Gsta1, Ugt1a6 (phase II) genes. Cyp1A1 was the phase I gene most rapidly induced (4 h at 1 nM); Cyp1B1 was induced at 48 h (1 nM), whereas Cyp1A2 expression was not affected. TCDD did not alter phase II gene expression, which remained at basal levels throughout the 48 h of culture. We studied more accurately the expression of Cyp1A1, the earliest gene to respond to the presence of TCDD. We found that: 1) Cyp1A1 gene induction is dependent on the duration of exposure (precisely it is first induced after 3 h of culture at 1 nM, the minimum effective-dose); 2) Cyp1A1 induction requires the continuous presence of TCDD, being interrupted 4 h after removal of the xenobiotic; and 3) induced expression of CYP1A1 protein is dependent on TCDD concentration, the higher the concentration the earlier the production of the enzyme. Furthermore, after 48 h of treatment, TCDD did not promote either apoptosis or changes to the differentiation status of the ES cells. These results are the first important step to investigate the effects of dioxin on the very early stages of mammalian development.  相似文献   

13.
14.
TCDD was found to cause a marked inhibition of 125I-epidermal growth factor (EGF) binding to its receptor on the cell surface of XB mouse keratinizing epithelial cells (XB cells) cultured in vitro. The EC50 concentration was estimated to be on the order of 3 x 10(-11) M 24 hours after TCDD administration. As early as 12 hours after the addition of 10(-9) M of TCDD, XB cells showed signs of a decline in 125I-EGF binding levels. The level of such EGF receptor downregulation reached a maximum at 24 hours, continued until day 2, but completely recovered by day 3. This was accompanied by a rise in protein kinase activities, particularly those of the protein tyrosine kinases during the initial period of 6-24 hours. To test the hypothesis that the EGF receptors of the cells, by showing TCDD-induced symptoms of downregulation, actually are being activated and triggering EGF-like signals, we examined the effects of both TCDD and exogenously added EGF on cell morphology, colony formation degree of keratinization, the pattern of activation of protein kinases and de novo protein synthesis, and EGF receptor phosphorylation. Based on the similarity of cell responses to these between TCDD- and EGF-treated cells, we concluded that TCDD, directly or indirectly, causes activation of the EGF receptor. In contrast, 12-O-tetradencanoylphorbol-13-acetate (TPA), which is known to downregulate EGF receptors by blocking their protein tyrosine kinase, produced dissimilar end results. The balance of evidence support the notion that the action of TCDD in this cell line is tightly coupled to the activation of the EGF receptor and that one of the key consequences of such a biochemical change is that it signals these cells to commit to terminal differentiation.  相似文献   

15.
16.
Two mechanisms of spermidine/spermine N1-acetyltransferase-induction   总被引:1,自引:0,他引:1  
The changes in activity of spermidine/spermine N1-acetyltransferase (SAT), a rate-limiting enzyme in polyamine degradation, were investigated to understand the mechanism of the induction of this enzyme in bovine lymphocytes. The activity of SAT was induced by stimulation with phytohemagglutinin (PHA), calcium ionophore A23187, sodium n-butyrate, or methylglyoxal bis(guanylhydrazone) (MGBG). When the cells were treated with a combination of PHA with either MGBG or butyrate, the increase in SAT was synergistic. However, the treatment of cells with both PHA and A23187 did not cause more induction of the enzyme activity than the stimulatory effects of each agent alone. The elevation in SAT caused by PHA or A23187 was inhibited by the simultaneous addition of 25 microM H-7, a protein kinase C inhibitor; the induction of the enzyme activity by MGBG or butyrate was slightly enhanced in the presence of H-7. In cells treated with a high concentration of O-tetradecanoylphorbol 13-acetate, which results in the breakdown of protein kinase C, PHA and A23187 did not give the maximum response, and MGBG slightly enhanced the enzyme activity. Dibutyryl cyclic AMP inhibited PHA-induced enzyme activity, but it stimulated MGBG- or butyrate-induced activity. Exposure to PHA or A23187 but not to MGBG or butyrate significantly increased the ornithine decarboxylase activity and DNA synthesis. These results showed that there were two different mechanisms of SAT induction. One is dependent on protein kinase C. The other one is independent of protein kinase C and is enhanced by cyclic AMP.  相似文献   

17.
18.
FSH and GnRH both stimulate rat granulosa cells to produce tissue-type plasminogen activator (tPA). We have studied the molecular mechanisms involved in the action of these hormones by measuring tPA mRNA levels in primary cultures of rat granulosa cells. When granulosa cells were cultured in the presence of FSH or GnRH the level of tPA mRNA was increased 20- and 12-fold, respectively. The induction of tPA mRNA by FSH and GnRH was additive and the kinetics of induction differed. The effect of FSH could be mimicked by bromo-cAMP or forskolin, and was drastically enhanced by cotreatment with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine. These findings are consistent with the notion that FSH mediates its effect through the protein kinase A pathway. GnRH is believed to augment phospholipid turnover in granulosa cells, leading to the activation of the protein kinase C pathway. Like GnRH, the protein kinase C activator phorbol myristate acetate also induced tPA mRNA in granulosa cells. In the presence of the protein synthesis inhibitor, cycloheximide, FSH-stimulated tPA message levels were enhanced by 30-fold, revealing superinduction of tPA mRNA levels by this pathway. In contrast the induction of tPA mRNA by GnRH was inhibited by cycloheximide indicating that the synthesis of an intermediate protein is required for the GnRH effect. Our data suggest that FSH and GnRH increase the tPA mRNA levels by two distinct pathways in cultured granulosa cells, providing a model system for studying the hormonal regulation of tPA gene expression.  相似文献   

19.
cDNA clones representing genes whose expression is modulated by treatment with mitogens and tumor promoters were isolated and characterized. TPA-S1 corresponds to an mRNA species whose abundance was increased markedly within 1 h of exposure to the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), and TPA-R1 represents an mRNA that was decreased in TPA-treated cells. The induction of TPA-S1 was blocked by actinomycin D but was not affected by cycloheximide, and it was specific for phorbol esters with tumor-promoting activity. The role of protein kinase C in the induction of TPA-S1 is supported by the following lines of evidence. (i) Agents that activated protein kinase C (TPA, platelet-derived growth factor, and diacylglycerol) also increased TPA-S1 mRNA levels. (ii) A potent PKC inhibitor blocked the induction of TPA-S1. (iii) Down-regulation of PKC activity, by treatment of cells with TPA for 24 h, resulted in a loss of responsiveness to TPA-S1 induction by subsequent TPA treatment. DNA sequence analysis of TPA-S1 predicts a cysteine-rich, secreted protein with a molecular weight of 22.6 X 10(3) that exhibits homology with sequences representing a protein with human erythroid-potentiating activity and protease inhibitory activity.  相似文献   

20.
CSV3 clones of simian virus 40 large T antigen-transformed murine 3T3 T cells can be made quiescent as part of a differentiation process. In these quiescent cells, insulin- and vanadate-induced mitogenesis are both associated with the induction of the c-jun proto-oncogene (Wang and Scott 1991 J. Cell. Physiol. 147, 102-110; Wang et al. 1991 Cell Growth Differ. 2, 645-652). The current studies were therefore designed to compare the early signal transduction pathways employed by insulin and vanadate to regulate c-jun expression. In quiescent CSV3-1 cells, down-regulation of protein kinase C by prolonged exposure to 12-O-tetra-decanoylphorbol-13-acetate or inhibition of protein kinase C activity by treatment with the protein kinase C antagonist staurosporine is shown not to affect c-jun induction by insulin or vanadate. This suggests that both insulin and vanadate act in a protein kinase C-independent manner. Insulin's effect on c-jun induction does, however, involve a G protein because insulin's effect can be inhibited by pertussis toxin. In contrast, vanadate induction of c-jun is not affected by pertussis toxin. Genistein, a general tyrosine kinase inhibitor, can inhibit the ability of vanadate to induce c-jun but it does not inhibit insulin's effect. Finally, the depletion of polyamines, particularly spermidine, by DL-alpha-difluoromethylornithine treatment also prevents c-jun induction by insulin but DL-alpha-difluoromethylornithine treatment has no effect on c-jun induction by vanadate. These observations indicate that the c-jun induction by insulin and vanadate in CSV3-1 cells is mediated by different signal transduction mechanisms. Together with our previously published data, these results suggest that c-jun can be induced independent of protein kinase C activation, without involvement of pertussis toxin-sensitive G protein, independent of induction of c-fos, and without expression of high levels of intracellular polyamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号