首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparanase is an endo-beta-D-glucuronidase that degrades heparan sulfate in the extracellular matrix and cell surfaces. Human proheparanase is produced as a latent 65-kDa polypeptide undergoing processing at two potential proteolytic cleavage sites, located at Glu109-Ser110 (site 1) and Gln157-Lys158 (site 2). Cleavage of proheparanase yields 8- and 50-kDa subunits that heterodimerize to form the active enzyme. The fate of the linker segment (Ser110-Gln157) residing between the two subunits, the mode of processing, and the protease(s) engaged in proheparanase processing are currently unknown. We applied multiple site-directed mutagenesis and deletions to study the nature of the potential cleavage sites and amino acids essential for processing of proheparanase in transfected human choriocarcinoma cells devoid of endogenous heparanase but possessing the enzymatic machinery for proper processing and activation of the proenzyme. Although mutagenesis at site 1 and its flanking sequences failed to identify critical residues for proteolytic cleavage, processing at site 2 required a bulky hydrophobic amino acid at position 156 (i.e. P2 of the cleavage site). Substitution of Tyr156 by Ala or Glu, but not Val, resulted in cleavage at an upstream site in the linker segment, yielding an improperly processed inactive enzyme. Processing of the latent 65-kDa proheparanase in transfected Jar cells was inhibited by a cell-permeable inhibitor of cathepsin L. Moreover, recombinant 65-kDa proheparanase was processed and activated by cathepsin L in a cell-free system. Altogether, these results suggest that proheparanase processing at site 2 is brought about by cathepsin L-like proteases. The involvement of other members of the cathepsin family with specificity to bulky hydrophobic residues cannot be excluded. Our results and a three-dimensional model of the enzyme are expected to accelerate the design of inhibitory molecules capable of suppressing heparanase-mediated enhancement of tumor angiogenesis and metastasis.  相似文献   

2.
Heparanase is an endo-beta-d-glucuronidase that degrades heparan sulfate in the extracellular matrix and on the cell surface. Human proheparanase is produced as a latent protein of 543 amino acids whose activation involves excision of an internal linker segment (Ser(110)-Gln(157)), yielding the active heterodimer composed of 8- and 50-kDa subunits. Applying cathepsin L knock-out tissues and cultured fibroblasts, as well as cathepsin L gene silencing and overexpression strategies, we demonstrate, for the first time, that removal of the linker peptide and conversion of proheparanase into its active 8 + 50-kDa form is brought about predominantly by cathepsin L. Excision of a 10-amino acid peptide located at the C terminus of the linker segment between two functional cathepsin L cleavage sites (Y156Q and Y146Q) was critical for activation of proheparanase. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry demonstrates that the entire linker segment is susceptible to multiple endocleavages by cathepsin L, generating small peptides. Mass spectrometry demonstrated further that an active 8-kDa subunit can be generated by several alternative adjacent endocleavages, yielding the precise 8-kDa subunit and/or slightly elongated forms. Altogether, the mode of action presented here demonstrates that processing and activation of proheparanase can be brought about solely by cathepsin L. The critical involvement of cathepsin L in proheparanase processing and activation offers new strategies for inhibiting the prometastatic, proangiogenic, and proinflammatory activities of heparanase.  相似文献   

3.
Processing of macromolecular heparin by heparanase   总被引:2,自引:0,他引:2  
Heparanase is an endo-glucuronidase expressed in a variety of tissues and cells that selectively cleaves extracellular and cell-surface heparan sulfate. Here we propose that this enzyme is involved also in the processing of serglycin heparin proteoglycan in mouse mast cells. In this process, newly synthesized heparin chains (60-100 kDa) are degraded to fragments (10-20 kDa) similar in size to commercially available heparin (Jacobsson, K. G., and Lindahl, U. (1987) Biochem. J. 246, 409-415). A fraction of these fragments contains the specific pentasaccharide sequence required for high affinity binding to antithrombin implicated with anticoagulant activity. Rat skin heparin, which escapes processing in vivo, was used as a substrate in reaction with recombinant human heparanase. An incubation product of commercial heparin size retained the specific pentasaccharide sequence, although oligosaccharides (3-4 kDa) containing this sequence could be degraded by the same enzyme. Commercial heparin was found to be a powerful inhibitor (I50 approximately 20 nM expressed as disaccharide unit, approximately 0.7 nM polysaccharide) of heparanase action toward antithrombin-binding oligosaccharides. Cells derived from a serglycin-processing mouse mastocytoma expressed a protein highly similar to other mammalian heparanases. These findings strongly suggest that the intracellular processing of the heparin proteoglycan polysaccharide chains is catalyzed by heparanase, which primarily cleaves target structures distinct from the antithrombin-binding sequence.  相似文献   

4.
5.
Mammalian heparanase, strongly implicated in the regulation of cell growth, migration, and differentiation, plays a crucial role in inflammation, angiogenesis, and metastasis. There is thus a clear need for understanding how heparanase activity is regulated. Cells can generate an active form of the enzyme from a larger inactive precursor protein by a process of secretion-recapture, internalization, and proteolytic processing in late endosomes/lysosomes. Cell surface heparan sulfate proteoglycans are the sole known components with a role in this trafficking of the heparanase precursor. Here, we provide evidence that heparan sulfate proteoglycans are not strictly required for this process. More importantly, by heparanase transfection, binding, and uptake experiments and by using a combination of specific inhibitors and receptor-defective cells, we have identified low density lipoprotein receptor-related proteins and mannose 6-phosphate receptors as key elements of the receptor system that mediates the capture of secreted heparanase precursor and its trafficking to the intracellular site of processing/activation.  相似文献   

6.
Heparan sulfate proteoglycans interact with many extracellular matrix constituents, growth factors and enzymes. Degradation of heparan sulfate by endoglycosidic heparanase cleavage affects a variety of biological processes. We have purified a 50-kDa heparanase from human hepatoma and placenta, and now report cloning of the cDNA and gene encoding this enzyme. Expression of the cloned cDNA in insect and mammalian cells yielded 65-kDa and 50-kDa recombinant heparanase proteins. The 50-kDa enzyme represents an N-terminally processed enzyme, at least 100-fold more active than the 65-kDa form. The heparanase mRNA and protein are preferentially expressed in metastatic cell lines and specimens of human breast, colon and liver carcinomas. Low metastatic murine T-lymphoma and melanoma cells transfected with the heparanase cDNA acquired a highly metastatic phenotype in vivo, reflected by a massive liver and lung colonization. This represents the first cloned mammalian heparanase, to our knowledge, and provides direct evidence for its role in tumor metastasis. Cloning of the heparanase gene enables the development of specific molecular probes for early detection and treatment of cancer metastasis and autoimmune disorders.  相似文献   

7.
Zhou Z  Bates M  Madura JD 《Proteins》2006,65(3):580-592
Human heparanase is an endo-beta-D-glycosidase that cleaves heparan sulphate (HS) chains in the extracellular matrix and basement membrane. It is known that the cleavage of HS by heparanase results in cell invasion and metastasis of cancer. Therefore, heparanase is considered an important target for cancer drug development. The three-dimensional structure of heparanase would be useful in the rational design of inhibitors targeted to the enzyme; however, the three-dimensional structure has not yet been determined. In our effort to design inhibitors, we developed a three-dimensional structure of heparanase using a homology-modeling approach. The homology-built structure is consistent to previous bioinformatics and site-mutation experimental results. The heparanase features a (alpha/beta)(8) TIM-barrel fold with two glutamate residues (Glu225 and Glu343) located in the active-site cleft. This feature supports the putative mechanism of proton donor and nucleophilic sites. Docking simulations yielded 41 complex structures, which indicate that the bound inhibitor could block ligand binding into the catalytic site. A free energy of binding model was established for 25 heparanase inhibitors with a training set of 25 heparanase inhibitors using the linear response MM-PBSA approach (LR-MM-PBSA). The correlation between calculated and experimental activity was 0.79 and the reliability of the model was validated with leave-one-out cross-validation method. Its predictive capability was further validated using a test set of 16 inhibitors similar to the training set of inhibitors. The correlation between the predicted and observed activities is significantly improved by the protein "induced-fit" that accounts for the flexibility of the receptor. These interaction and pharmacophore elements provide a unique insight to the rational design of new ligands targeted to the enzyme.  相似文献   

8.
Heparanase processing by lysosomal/endosomal protein preparation   总被引:6,自引:0,他引:6  
Cohen E  Atzmon R  Vlodavsky I  Ilan N 《FEBS letters》2005,579(11):2334-2338
Heparanase is an endo-beta-glucuronodase involved in cleavage of heparan sulfate side chains, activity that is strongly implicated in cell dissemination associated with tumor metastasis and inflammation. Heparanase is first synthesized as a latent 65 kDa precursor that is converted into an active enzyme upon proteolytic processing. Previously, we have reported that elevation of the lysosomal pH results in complete inhibition of heparanase processing, suggesting that lysosomal protease(s) and acidic pH conditions are required for heparanase processing. Here, we adopted a cell fractionation approach and provide evidence that incubation of the pro-enzyme with lysosome/endosome, but not with cytoplasmic fractions resulted in processing and activation of the 65 kDa latent heparanase. Moreover, while the water soluble lysosome/endosome fraction exhibited no apparent processing activity, heparanase processing by the water insoluble lysosome/endosome membrane fraction was readily detected and exhibited the expected pH dependency.  相似文献   

9.

Heparanase is an endo-beta-glucuronidase, the only enzyme in mammals capable of cleaving heparan sulfate/heparin chains from proteoglycans. The oligosaccharides generated by heparanase present extensive biological functions since such oligosaccharides interact with adhesion molecules, growth factors, angiogenic factors and cytokines, modulating cell proliferation, migration, inflammation, and carcinogenesis. However, the regulation of heparanase activity is not fully understood. It is known that heparanase is synthesized as an inactive 65 kDa isoform and that post-translation processing forms an active 50 kDa enzyme. In the present study, we are interested in investigating whether heparanase is regulated by its own substrate as observed with many other enzymes. Wild-type Chinese hamster (Cricetulus griséus) ovary cells (CHO-K1) were treated with different doses of heparin. Heparanase expression was analyzed by Real-time PCR and flow cytometry. Also, heparanase activity was measured. The heparanase activity assay was performed using a coated plate with biotinylated heparan sulfate. In the present assay, a competitive heparin inhibition scenario was set aside. Exogenous heparin trigged a cell signaling pathway that increased heparanase mRNA and protein levels. The Wnt/beta-catenin pathway, judged by TCF-driven luciferase activity, seems to be involved to enhance heparanase profile during treatment with exogenous heparin. Lithium chloride treatment, an activator of the Wnt/beta-catenin pathway, confirmed such mechanism of transduction in vivo using zebrafish embryos and in vitro using CHO-K1 cells. Taken together the results suggest that heparin modulates heparanase expression by Wnt/beta-catenin.

  相似文献   

10.
Heparan sulfates, the carbohydrate chains of heparan sulfate proteoglycans, play an important role in basement membrane organization and endothelial barrier function. We explored whether endothelial cells secrete a heparan sulfate degrading heparanase under inflammatory conditions and what pathways were responsible for heparanase expression. Heparanase mRNA and protein by Western blot were induced when cultured endothelial cells were treated with cytokines, oxidized low-density lipoprotein (LDL) or fatty acids. Heparanase protein in the cell media was induced 2-10-fold when cells were treated with tumor necrosis factor alpha (TNFalpha) or interleukin 1beta (IL-1beta). Vascular endothelial growth factor (VEGF), in contrast, decreased heparanase secretion. Inhibitors to nuclear factor-kappaB (NFkappaB), PI3-kinase, MAP kinase, or c-jun kinase (JNK) did not affect TNFalpha-induced heparanase secretion. Interestingly, inhibition of caspase-8 completely abolished heparanase secretion induced by TNFalpha. Fatty acids also induced heparanase, and this required an Sp1 site in the heparanase promoter. Immunohistochemical analyses of cross sections of aorta showed intense staining for heparanase in the endothelium of apoE-null mice but not wild-type mice. Thus, heparanase is an inducible inflammatory gene product that may play an important role in vascular biology.  相似文献   

11.
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.  相似文献   

12.
An ELISA method for the detection and quantification of human heparanase   总被引:8,自引:0,他引:8  
Heparanase is a mammalian endo-beta-D-glucuronidase that cleaves heparan sulfate side chains at a limited number of sites. Heparanase enzymatic activity is thought to participate in degradation and remodeling of the extracellular matrix and to facilitate cell invasion associated with tumor metastasis, angiogenesis, and inflammation. Traditionally, heparanase activity was well correlated with the metastatic potential of a large number of tumor-derived cell types. More recently, heparanase upregulation was detected in an increasing number of primary human tumors, correlating, in some cases, with poor postoperative survival and increased tumor vascularity. The present study was undertaken to develop a highly sensitive ELISA suitable for the determination and quantification of human heparanase in tissue extracts and body fluids. The assay preferentially detects the 8+50 kDa active heparanase heterodimer vs. the latent 65 kDa proenzyme and correlates with immunoblot analysis of heparanase containing samples. It detects heparanase at concentrations as low as 200 pg/ml and is suitable for quantification of heparanase in tissue extracts and urine.  相似文献   

13.
Involvement of heparanase in migration of microglial cells   总被引:1,自引:0,他引:1  
Heparanase, a matrix-degrading enzyme that cleaves heparan sulfate side chains from heparan sulfate proteoglycans (HSPGs), has been shown to facilitate cell invasion, migration, and extravasation of metastatic tumor cells or immune cells. In this study, the expression and functions of heparanase were investigated using rat primary cultured microglia, the resident macrophages in the brain. The microglia were found to express heparanase mRNA and protein. Microglia treated with lipopolysaccharide (LPS) were activated, expressed induced nitric oxide synthase and elevated the expression of heparanase. Heparanase has two molecular weights: a 65 kDa latent form and an active 50 kDa. Both forms were expressed by LPS-treated activated microglia; however, untreated microglia primarily expressed the latent form. Cell lysates from microglia actually degraded Matrigel containing HSPG. Heparanase was colocalized with the actin cytoskeleton in microglial leading edges or ruffled membranes. Microglia transmigrated through a Matrigel-coated pored membrane. This process was inhibited by SF-4, a specific heparanase inhibitor, in a concentration-dependent manner. Degraded HSPG was generated when microglia transmigrated through the coated membrane, and this was also inhibited by SF-4. The results suggest the involvement of heparanase in the migration or invasion of microglia or brain macrophages across basement membrane around brain vasculature.  相似文献   

14.
Heparanase induces Akt phosphorylation via a lipid raft receptor   总被引:1,自引:0,他引:1  
The endoglycosidase heparanase is the predominant enzyme that degrades heparan sulfate side chains of heparan sulfate proteoglycans, activity that is strongly implicated in tumor metastasis. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Among these is the induction of Akt/PKB phosphorylation noted in endothelial- and tumor-derived cells. Protein domains of heparanase required for signaling were not identified to date, nor were identified heparanase binding proteins/receptors capable of transmitting heparanase signals. Here, we examined the possible function of mannose 6-phosphate receptor (MPR) and low-density lipoprotein-receptor related protein (LRP), recently implicated in cellular uptake of heparanase, as heparanase receptors mediating Akt phosphorylation. We found that heparanase addition to MPR- and LRP-deficient fibroblasts elicited Akt activation indistinguishable from control fibroblasts. In contrast, disruption of lipid rafts abrogated Akt/PKB phosphorylation following heparanase addition. These results suggest that lipid raft-resident receptor mediates heparanase signaling.  相似文献   

15.
Heparanase is an endoglucuronidase that plays an important role in tumor invasion and metastasis. A full-length heparanase gene was cloned from a mouse embryo cDNA library and determined to encode a protein of 535 amino acids that is 77% identical to human heparanase. The full-length mouse gene was stably expressed in NS0 myeloma cells. The recombinant mouse heparanase protein was purified to homogeneity from cell lysates by a combination of Con-A affinity chromatography, heparin affinity chromatography, and size exclusion chromatography. The purified protein consisted of a non-covalent heterodimer of 50- and 8-kDa polypeptides, similar to the human homolog. The protein was enzymatically active in assays using radiolabeled ECM and heparan sulfate as substrates. The maximum heparanase activity was observed at acidic conditions; however, significant activity was also detected at neutral pH. The enzymatic activity of mouse heparanase was blocked by known heparanase inhibitors.  相似文献   

16.
Heparanase is an enzyme involved in extracellular matrix remodelling and heparan sulphate proteoglycan catabolism. It is secreted by metastatic tumour cells, allowing them to penetrate the endothelial cell layer and basement membrane to invade target organs. The release of growth factors at the site of cleaved heparan sulphate chains further enhance the potential of the tumour by encouraging the process of angiogenesis. This leads to increased survival and further proliferation of the tumour. Aptamers are single or double stranded oligonucleotides that recognise specific small molecules, peptides, proteins, or even cells or tissues and have shown great potential over the years as diagnostic and therapeutic agents in anticancer treatment. For the first time, single stranded DNA aptamers were successfully generated against the active heterodimer form of heparanase using a modified SELEX protocol, and eluted based on increasing affinity for the target. Sandwich ELISA assays showed recognition of heparanase by the aptamers at a site distinct from that of a polyclonal HPSE1 antibody. The binding affinities of aptamer to immobilised enzyme were high (7 × 10(7) to 8 × 10(7) M(-1)) as measured by fluorescence spectroscopy. Immunohistochemistry and immunofluorescence studies demonstrated that the aptamers were able to recognise heparanase with staining comparable or in some cases superior to that of the HPSE1 antibody control. Finally, matrigel assay demonstrated that aptamers were able to inhibit heparanase. This study provides clear proof of principle concept that nucleic acid aptamers can be generated against heparanase. These reagents may serve as useful tools to explore the functional role of the enzyme and in the future development of diagnostic assays or therapeutic reagents.  相似文献   

17.
Heparanase is an endo-beta-glucuronidase that cleaves heparan sulfate (HS) chains of heparan sulfate proteoglycans on cell surfaces and in the extracellular matrix (ECM). Heparanase, overexpressed by most cancer cells, facilitates extravasation of blood-borne tumor cells and causes release of growth factors sequestered by HS chains, thus accelerating tumor growth and metastasis. Inhibition of heparanase with HS mimics is a promising target for a novel strategy in cancer therapy. In this study, in vitro inhibition of recombinant heparanase was determined for heparin derivatives differing in degrees of 2-O- and 6-O-sulfation, N-acetylation, and glycol splitting of nonsulfated uronic acid residues. The contemporaneous presence of sulfate groups at O-2 of IdoA and at O-6 of GlcN was found to be non-essential for effective inhibition of heparanase activity provided that one of the two positions retains a high degree of sulfation. N-Desulfation/ N-acetylation involved a marked decrease in the inhibitory activity for degrees of N-acetylation higher than 50%, suggesting that at least one NSO3 group per disaccharide unit is involved in interaction with the enzyme. On the other hand, glycol splitting of preexisting or of both preexisting and chemically generated nonsulfated uronic acids dramatically increased the heparanase-inhibiting activity irrespective of the degree of N-acetylation. Indeed N-acetylated heparins in their glycol-split forms inhibited heparanase as effectively as the corresponding N-sulfated derivatives. Whereas heparin and N-acetylheparins containing unmodified D-glucuronic acid residues inhibited heparanase by acting, at least in part, as substrates, their glycol-split derivatives were no more susceptible to cleavage by heparanase. Glycol-split N-acetylheparins did not release basic fibroblast growth factor from ECM and failed to stimulate its mitogenic activity. The combination of high inhibition of heparanase and low release/potentiation of ECM-bound growth factor indicates that N-acetylated, glycol-split heparins are potential antiangiogenic and antimetastatic agents that are more effective than their counterparts with unmodified backbones.  相似文献   

18.
The aim of this study was to investigate the mechanism of activation of human heparanase, a key player in heparan sulfate degradation, thought to be involved in normal and pathologic cell migration processes. Active heparanase arises as a product of a series of proteolytic processing events. Upon removal of the signal peptide, the resulting, poorly active 65 kDa species undergoes the excision of an intervening 6 kDa fragment generating an 8 kDa polypeptide and a 50 kDa polypeptide, forming the fully active heterodimer. By engineering of tobacco etch virus protease cleavage sites at the N- and C-terminal junctions of the 6 kDa fragment, we were able to reproduce the proteolytic activation of heparanase in vitro using purified components, showing that cleavage at both sites leads to activation in the absence of additional factors. On the basis of multiple-sequence alignment of the N-terminal fragment, we conclude that the first beta/alpha/beta element of the postulated TIM barrel fold is contributed by the 8 kDa subunit and that the excised 6 kDa fragment connects the second beta-strand and the second alpha-helix of the barrel. Substituting the 6 kDa fragment with the topologically equivalent loop from Hirudinaria manillensis hyaluronidase or connecting the 8 and 50 kDa fragments with a spacer of three glycine-serine pairs resulted in constitutively active, single-chain heparanases which were comparable to the processed, heterodimeric enzyme with regard to specific activity, chromatographic profile of hydrolysis products, complete inhibition at NaCl concentrations above 600 mM, a pH optimum of pH approximately 5, and inhibition by heparin with IC(50)s of 0.9-1.5 ng/microL. We conclude that (1) the heparanase heterodimer (alpha/beta)(8)-TIM barrel fold is contributed by both 8 and 50 kDa subunits with the 6 kDa connecting fragment leading to inhibition of heparanase by possibly obstructing access to the active site, (2) proteolytic excision of the 6 kDa fragment is necessary and sufficient for heparanase activation, and (3) our findings open the way to the production of recombinant, constitutively active single-chain heparanase for structural studies and for the identification of inhibitors.  相似文献   

19.
Cell surface heparan sulfate proteoglycans undergo unique intracellular degradation pathways after they are endocytosed from the cell surface. Heparanase, an endo-beta-glucuronidase capable of cleaving heparan sulfate, has been demonstrated to contribute to the physiological degradation of heparan sulfate proteoglycans and therefore regulation of their biological functions. A rat parathyroid cell line was found to produce heparanase with an optimal activity at neutral and slightly acidic conditions suggesting that the enzyme participates in heparan sulfate proteoglycan metabolism in extralysosomal compartments. To elucidate the detailed properties of the purified enzyme, the substrate specificity against naturally occurring heparan sulfates and chemically modified heparins was studied. Cleavage sites of rat heparanase were present in heparan sulfate chains obtained from a variety of animal organs, but their occurrence was infrequent (average, 1-2 sites per chain) requiring recognition of both undersulfated and sulfated regions of heparan sulfate. On the other hand intact and chemically modified heparins were not cleaved by heparanase. The carbohydrate structure of the newly generated reducing end region of heparan sulfate cleaved by the enzyme was determined, and it represented relatively undersulfated structures. O-Sulfation of heparan sulfate chains also played important roles in substrate recognition, implying that rat parathyroid heparanase acts near the boundary of highly sulfated and undersulfated domains of heparan sulfate proteoglycans. Further elucidation of the roles of heparanase in normal physiological processes would provide an important tool for analyzing the regulation of heparan sulfate-dependent cell functions.  相似文献   

20.
Heparan sulfate proteoglycans (HSPGs) play a key role in the self-assembly, insolubility and barrier properties of basement membranes and extracellular matrices. Hence, cleavage of heparan sulfate (HS) affects the integrity and functional state of tissues and thereby fundamental normal and pathological phenomena involving cell migration and response to changes in the extracellular microenvironment. Here, we describe the molecular properties, expression and function of a human heparanase, degrading HS at specific intrachain sites. The enzyme is synthesized as a latent approximately 65 kDa protein that is processed at the N-terminus into a highly active approximately 50 kDa form. The heparanase mRNA and protein are preferentially expressed in metastatic cell lines and human tumor tissues. Overexpression of the heparanase cDNA in low-metastatic tumor cells conferred a high metastatic potential in experimental animals, resulting in an increased rate of mortality. The heparanase enzyme also releases ECM-resident angiogenic factors in vitro and its overexpression induces an angiogenic response in vivo. Heparanase may thus facilitate both tumor cell invasion and neovascularization, both critical steps in cancer progression. The enzyme is also involved in cell migration associated with inflammation and autoimmunity. The unexpected identification of a single predominant functional heparanase suggests that the enzyme is a promising target for drug development. In fact, treatment with heparanase inhibitors markedly reduces tumor growth, metastasis and autoimmune disorders in animal models. Studies are underway to elucidate the involvement of heparanase in normal processes such as implantation, embryonic development, morphogenesis, tissue repair, inflammation and HSPG turnover. Heparanase is the first functional mammalian HS-degrading enzyme that has been cloned, expressed and characterized. This may lead to identification and cloning of other glycosaminoglycan degrading enzymes, toward a better understanding of their involvement and significance in normal and pathological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号