首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soupene et al . [ J. Bacteriol. (2003) 185 5611–5626] made the unexpected observation that the presence of a mutation, in the gene for the N -acetylglucosamine repressor, nagC , increased the growth rate of Escherichia coli MG1655 on galactose, an unrelated sugar. We have found that NagC, binds to a single, high-affinity site overlapping the promoter of galP (galactose permease) gene and that expression of galP is repressed by a combination of NagC, GalR and GalS. In addition to the previously identified galOE operator, other gal operators further upstream are required for full repression. GalS has a specific role, as it binds with higher affinity to one of the upstream operators but its effect in vivo is only observed in the presence of GalR. Regulation of galP by three specific repressors, NagC, GalR and GalS is unusual in that it involves multiple, specific regulators from two different areas of metabolism. This novel regulation seems to be particular for E. coli and its nearest neighbour, Shigella. Other bacteria with galP orthologues, although retaining the metK-galP gene order, do not have the NagC site. Although quantitative effects were strain specific, nagC mutations increased the growth rate on galactose of all E. coli strains tested.  相似文献   

2.
The galactose regulon of Escherichia coli   总被引:5,自引:2,他引:3  
  相似文献   

3.
Signal integration in the galactose network of Escherichia coli   总被引:1,自引:1,他引:0  
  相似文献   

4.
Chatterjee S  Ghosh K  Dhar A  Roy S 《Proteins》2002,49(4):554-559
Gal repressor (GalR) binds D-galactose, which is responsible for lifting of repression of the gal operon. Proton T1 measurements of alpha- and beta-anomers of galactose as a function of gal repressor show preferential binding of the beta-anomer. The beta-anomer was isolated by high-performance liquid chromatography and was shown to bind tightly to GalR. Calorimetry was used to determine enthalpy changes at several temperatures. Heat capacity change was found to be positive, indicating that a significant amount of hydrophobic surface area was exposed upon galactose binding. Bis-ANS binding to GalR is significantly enhanced in the presence of a saturating amount of galactose, indicating additional exposure of hydrophobic surfaces. We propose that the galactose-induced conformational change involves the opening of the two subdomains, which may disrupt protein-protein interactions responsible for repression.  相似文献   

5.
Escherichia coli adapted to growth with low carbohydrate concentrations bypassed the requirement for exogenous inducer with at least three well-studied sugar regulons. Induction of mgl and gal genes became independent of added galactose in bacteria approaching stationary phase or during continuous culture with micromolar glucose in the medium. Bacteria became independent of exogenous induction because endogenous galactose and cyclic AMP (cAMP) pools were sufficient for high expression of mgl and gal genes under glucose limitation. Limitation-stimulated induction of mgl was dependent on a functional galETK operon for synthesis of the inducer galactose. Intracellular galactose levels were maximal not during starvation (or slow steady-state growth rates approaching starvation) but at fast growth rates with micromolar glucose. The extent of mgl/gal induction correlated better with inducer availability than with cAMP concentrations under all conditions tested. Endogenous inducer accumulation represents an adaptation to low-nutrient environments, leading to derepression of high-affinity transport systems like Mgl essential for bacterial competitiveness at low nutrient concentrations.  相似文献   

6.
7.
8.
9.
10.
In Kluyveromyces lactis, galactose transport has been thought to be mediated by the lactose permease encoded by LAC12. In fact, a lac12 mutant unable to grow on lactose did not grow on galactose either and showed low and uninducible galactose uptake activity. The existence of other galactose transport systems, at low and at high affinity, had, however, been hypothesized on the basis of galactose uptake kinetics studies. Here we confirmed the existence of a second galactose transporter and we isolated its structural gene. It turned out to be HGT1, previously identified as encoding the high-affinity glucose carrier. Analysis of galactose transporter mutants, hgt1 and lac12, and the double mutant hgt1lac12, suggested that Hgt1 was the high-affinity and Lac12 was the low-affinity galactose transporter. HGT1 expression was strongly induced by galactose and insensitive to glucose repression. This could explain the rapid adaptation to galactose observed in K. lactis after a shift from glucose to galactose medium.  相似文献   

11.
12.
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.  相似文献   

13.
Gal repressosome contains an antiparallel DNA loop   总被引:6,自引:0,他引:6  
Gal repressosome assembly and repression of the gal operon in Escherichia coli occurs when two dimeric GalR proteins and the histone-like HU protein bind to cognate sites causing DNA looping. Structure-based genetic analysis defined the GalR surfaces interacting to form a stacked, V-shaped, tetrameric structure. Stereochemical models of the four possible DNA loops compatible with the GalR tetramer configuration were constructed using the sequence-dependent structural parameters of the interoperator DNA and conformation changes caused by GalR and asymmetric HU binding. Evaluation of their DNA elastic energies gave unambiguous preference to a loop structure in which the two gal operators adopt an antiparallel orientation causing undertwisting of DNA.  相似文献   

14.
15.
16.
2-Deoxygalactose is a specific substrate of the galactose permease. The apparent Km is about 500 micron, compared to 45 micron for galactose, whereas the maximal rate of uptake is one-half to one-third of that of galactose. None of the other galactose transport systems, including methyl beta-D-thiogalactosides I and II, the beta-methyl-galactoside permease, and both arabinose systems, is able to catalyze transport of 2-deoxygalactose to a significant extent. 2-Deoxygalactose can also be used to isolate mutants defective in galactose permease, since it is bacteriostatic. Colonies that grow with lactate, malate, or succinate as a carbon source in the presence of 0.5 to 2 mM 2-doexygalactose were found to be mostly galP mutants, lacking galactose permease. Spontaneous 2-deoxygalactose-resistant strains arose with a frequency of about 2 X 10(-6). galP mutants have also been derived from pts deletion mutants that require galactose permease for growth on glucose. Revertants have been obtained that have acquired the parental phenotype.  相似文献   

17.
18.
19.
In Escherichia coli, the exu regulon of the hexuronate system involves the three exuT, uxaCA and uxaB operons and is under the negative control of the exuR regulatory gene product. The technique developed by Casadaban, Chou and Cohen was employed to construct two plasmids containing operon fusions in which the lactose genes were fused to the uxaCA and exuT operons. These fusions were transferred into the chromosome by a reciprocal recombination event, and the resulting strains were used for isolation of mutants defective in repression. Two types of operator-constitutive mutants were obtained: one specific for the uxaCA operon expression and the other affecting the exuT gene expression. This genetic evidence confirms that these two operons which are divergently transcribed each possess their own operator site.--The derepressed expression of the two exuT-lac and uxaCA-lac operons and the uxaB gene was also examined upon introduction of plasmids bearing various operators of the exu regulon. The results of testing exuR repressor titration by multiple copies of the exu operators allowed us to show a gradation in the affinity degrees for the three exu operators: uxaBo has the strongest affinity for the exuR repressor and uxaCo the weakest, although that of exuTo seems to be just slightly greater. This gradation may play a role in the control of the exu regulon expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号