首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   

2.
Metabolite compartmentation in Saccharomyces cerevisiae.   总被引:6,自引:6,他引:0  
Uninduced cultures of Saccharomyces cerevisiae exhibit high basal levels of allantoinase, allantoicase, and ureidoglycolate hydrolase, the enzymes responsible for degrading allantoin to urea. As a result, these activities increase only 4- to 8-fold upon induction, whereas the urea-degrading enzymes, urea carboxylase and allophanate hydrolase, have very low basal levels and routinely increase 30-fold on induction. Differences in the inducibility of these five enzymes were somewhat surprising because they are all part of the same pathway and have the same inducer, allophanate. Our current studies reconcile these observations. S. cerevisiae normally contained up to 1 mM allantoin sequestered in a cellular organelle, most likely the vacuole. Separation of the large amounts of allantoin and the enzymes that degrade it provide the cell with an efficient nitrogen reserve. On starvation, sequestered allantoin likely becomes accessible to these degradative enzymes. Because they are already present at high levels, the fact that their inducer is considerably removed from the input allantoin is of little consequence. This suggests that at times metabolite compartmentation may play an equal role with enzyme induction in the regulation of allantoin metabolism. Metabolism of arginine, another sequestered metabolite, must be controlled both by induction of arginase and compartmentation because arginine serves both as a reserve nitrogen source and a precursor of protein synthesis. The latter function precludes the existence of high basal levels of arginase.  相似文献   

3.
4.
Association of arginase and ornithine transcarbamoylase (OTCase) has been proposed to play an essential role in the regulation of arginine metabolism in Saccharomyces cerevisiae (Wiame, J.-M. (1971) Curr. Top. Cell. Reg. 4, 1-39). In this report multienzyme complex formation is directly demonstrated in the presence of the active-site ligands for OTCase and arginase. Using equilibrium sedimentation, a dissociation constant for complex formation was determined to be 2.3 X 10(-8) M in the presence of ornithine and agmatine, active-site ligands for OTCase and arginase, respectively. A molecular stoichiometry in the complex of one molecule of OTCase to one molecule of arginase was verified using transmission electron microscopy. The dimensions of the complex were determined by negative staining and rotary and unidirectional shadowing techniques to be 102 A wide by 81 A high. These dimensions are quantitively consistent with dimensions of the individual enzymes (Duong, L. T., Eisenstein, E., Green, S. M., Ornberg, R. L., and Hensley, P. (1986) J. Biol. Chem. 261, 12807-12813). The enzymatic activity of OTCase is virtually completely inhibited when associated with arginase, reflecting the dramatic modulation of enzyme activity as a consequence of the acquisition of quaternary structure in this multienzyme complex.  相似文献   

5.
6.
7.
The synthesis, interconversion, and catabolism of purine bases, ribonucleosides, and ribonucleotides in wild-type Saccharomyces cerevisiae were studied by measuring the conversion of radioactive adenine, hypoxanthine, guanine, and glycine into acid-soluble purine bases, ribonucleosides, and ribonucleotides, and into nucleic acid adenine and guanine. The pathway(s) by which adenine is converted to inosinate is (are) uncertain. Guanine is extensively deaminated to xanthine. In addition, some guanine is converted to inosinate and adenine nucleotides. Inosinate formed either from hypoxanthine or de novo is readily converted to adenine and guanine nucleotides.  相似文献   

8.
Abstract Accumulation of Li+ in Saccharomyces cerevisiae X2180-1B occured via an apparent stoichiometric relationship of 1: 1 (K+/Li+) when S. cerevisiae was incubated in the presence of 5 and 10 mM LiCl for 3 h. Other cellular cations (Mg2+, Ca2+ and Na+) did not vary on Li+ accumulation, although lithium chemistry dictates a degree of similarity to Group I and II metal cations. Compartmentation of Li+ was mainly in the vacuole which accounted for 85% of the Li+ accumulated after a 6-h incubation period. The remainder was located in the cytosol with negligible amounts being bound to cell fragments including the cell wall. Transmission electron microscopy of Li+-loaded cells revealed enlarged vacuoles compared with control cells. This asymmetric cellular distribution may therefore enhance tolerance of S. cerevisiae to Li+ and ensure that essential metabolic processes in the cytosol are not disrupted.  相似文献   

9.
Proline-requiring mutants of Saccharomyces cerevisiae were isolated. Each mutation is recessive and is inherited as expected for a single nuclear gene. Three complementation groups cold be defined which are believed to correspond to mutations in the three genes (pro1, pro2, and pro3) coding for the three enzymes of the pathway. Mutants defective in the pro1 and pro2 genes can be satisfied by arginine or ornithine as well as proline. This suggests that the blocks are in steps leading to glutamate semialdehyde, either in glutamyl kinase or glutamyl phosphate reductase. A pro3 mutant has been shown by enzyme assay to be deficient in delta 1-pyrroline-5-carboxylate reductase which converts pyrroline-5-carboxylate to proline. A unique feature of yeast proline auxotrophs is their failure to grown on the rich medium, yeast extract-peptone-glucose. This failure is not understood at present, although it accounts for the absence of proline auxotrophs in previous screening for amino acid auxotrophy.  相似文献   

10.
Proline is converted to glutamate in the yeast Saccharomyces cerevisiae by the sequential action of two enzymes, proline oxidase and delta 1-pyrroline-5-carboxylate (P5C) dehydrogenase. The levels of these enzymes appear to be controlled by the amount of proline in the cell. The capacity to transport proline is greatest when the cell is grown on poor nitrogen sources, such as proline or urea. Mutants have been isolated which can no longer utilize proline as the sole source of nitrogen. Mutants in put1 are deficient in proline oxidase, and those in put2 lack P5C dehydrogenase. The put1 and put2 mutations are recessive, segregate 2:2 in tetrads, and appear to be unlinked to one another. Proline induces both proline oxidase and P5C dehydrogenase. The arginine-degradative pathway intersects the proline-degradative pathway at P5C. The P5C formed from the breakdown of arginine or ornithine can induce both proline-degradative enzymes by virtue of its conversion to proline.  相似文献   

11.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

12.
13.
The PRO1, PRO2, and PRO3 genes were isolated by functional complementation of pro1, pro2, and pro3 (proline-requiring) strains of Saccharomyces cerevisiae. Independent clones with overlapping inserts were isolated from S. cerevisiae genomic libraries in YEp24 (2 microns) and YCp50 (CEN) plasmids. The identity of each gene was determined by gene disruption, and Southern hybridization and genetic analyses confirmed that the bona fide genes had been cloned. Plasmids containing each gene were introduced into known bacterial proline auxotrophs, and the ability to restore proline prototrophy was assessed. Interspecies complementation demonstrated that the S. cerevisiae PRO1 gene encoded gamma-glutamyl kinase, PRO2 encoded gamma-glutamyl phosphate reductase, and PRO3 encoded delta 1-pyrroline-5-carboxylate reductase. The presence of the PRO3 gene on a high-copy-number plasmid in S. cerevisiae caused a 20-fold overproduction of delta 1-pyrroline-5-carboxylate reductase. The PRO2 gene mapped on chromosome XV tightly linked to cdc66, and the PRO3 gene was located on the right arm of chromosome V between HIS1 and the centromere.  相似文献   

14.
Three aminopeptidases (L-aminoacyl L-peptide hydrolases, EC 3.4.11) and a single dipeptidase (L-aminoacyl L-amino acid hydrolase, EC 3.4.13) are present in homogenates of Saccharomyces cerevisiae. Bassed on differences in substrate specificity and the sensitivity to Zn2+ activation, methods were developed that allow the selective assay of these enzymes in crude cell extracts. Experiments with isolated vacuoles showed that aminopeptidase I is the only yeast peptidase located in the vacuolar compartment. Aminopeptidase II (the other major aminopeptidase of yeast) seems to be an external enzyme, located mainly outside the plasmalemma. The synthesis of aminopeptidase I is repressed in media containing more than 1% glucose. In the presence of ammonia as the sole nitrogen source its activity is enhanced 3--10-fold when compared to that in cells grown on peptone. In contrast, the levels of aminopeptidase II and dipeptidase are less markedly dependent on growth medium composition. It is concluded that aminopeptidase II facilitates amino acid uptake by degrading peptides extracellularly, whereas aminopeptidase I is involved in intracellular protein degradation.  相似文献   

15.
Experimental results are presented in support of the model previously proposed for specific induction of the synthesis of enzymes for arginine catabolism in Saccharomyces cerevisiae (Wiame, 1971a,b), and its connection with end-product repression of arginine biosynthetic enzymes. The data support the occurrence of negative regulation of metabolism in a eukaryote.Operator regions, one for arginase and another for ornithine transaminase, are identified. The operator mutations are fully constitutive. A mutation compatible with the occurrence of a catabolic represser, CARGR, leads to partial pleiotropic constitutivity.The connection between the induction process and the repression of biosynthetic enzymes is due to a common receptor of metabolic signals, an ambivalent repressor ARGR endowed with the property of a usual repressor for anabolic enzymes and playing the role of inducer at the level of CARGR; this cascade process simulates a positive control. argR? mutations, by producing defective ARGR, “turn on” anabolic enzyme synthesis and “turn off” the synthesis of catabolic enzymes (Fig. 2). The dual role of ARGR is confirmed by the isolation of a mutation argRIId which, in contrast to the defective properties caused by usual argR? mutations, causes a dominant hyperactivity toward induction of a catabolic enzyme, but retains recessive hypoactivity toward repression of an anabolic enzyme. Such an ambivalent repressor is a function necessary for mutual, balanced exclusion between opposite metabolisms.Many operator constitutive mutations for arginase, cargA+O?, change the level of enzyme to a similar value, thus defining a genetic function. One of these mutations, cargA+Oh, in addition to having unusual genetic behaviour, leads to production of twice as much arginase as cargA+O?. This suggests the existence of another genetic region near the structural gene for this enzyme and an additional regulatory function to be analyzed in a separate paper (Dubois &; Wiame, 1978).  相似文献   

16.
Repression of arginine anabolic genes and induction of arginine catabolic genes are mediated by a three-component protein complex, interacting with specific DNA sequences in the presence of arginine. Although ArgRI and Mcm1, two MADS-box proteins, and ArgRII, a zinc cluster protein, contain putative DNA binding domains, alone they are unable to bind the arginine boxes in vitro. Using purified glutathione S-transferase fusion proteins, we demonstrate that ArgRI and ArgRII1-180 or Mcm1 and ArgRII1-180 are able to reconstitute an arginine-dependent binding activity in mobility shift analysis. Binding efficiency is enhanced when the three recombinant proteins are present simultaneously. At physiological concentration, the full-length ArgRII is required to fulfill its functions; however, when ArgRII is overexpressed, the first 180 amino acids are sufficient to interact with ArgRI, Mcm1, and arginine, leading to the formation of an ArgR-Mcm1-DNA complex. Several lines of evidence indicate that ArgRII is the sensor of the effector arginine and that the binding site of arginine would be the region downstream from the zinc cluster, sharing some identity with the arginine binding domain of bacterial arginine repressors.  相似文献   

17.
Growth and metabolism of inositol-starved Saccharomyces cerevisiae.   总被引:14,自引:12,他引:14       下载免费PDF全文
Upon starvation for inositol, a phospholipid precursor, an inositol-requiring mutant of Saccharomyces cerevisiae has been shown to die if all other conditions are growth supporting. The growth and metabolism of inositol-starved cells has been investigated in order to determine the physiological state leading to "inositolless death". The synthesis of the major inositol-containing phospholipid ceases within 30 min after the removal of inositol from the growth medium. The cells, however, continue in an apparently normal fashion for one generation (2 h under the growth conditions used in this study). The cessation of cell division is not preceded or accompanied by any detectable change in the rate of macromolecular synthesis. When cell division ceases, the cells remain constant in volume, whereas macromolecular synthesis continues at first at an unchanged rate and eventually at a decreasing rate. Macromolecular synthesis terminates after about 4 h of inositol starvation, at approximately the time when the cells begin to die. Cell death is also accompanied by a decline in cellular potassium and adenosine triphosphate levels. The cells can be protected from inositolless death by several treatments that block cellular metabolism. It is concluded that inositol starvation results in a imbalance between the expansion of cell volume and the accumulation of cytoplasmic constituents. This imbalance is very likely the cause of inositolless death.  相似文献   

18.
19.
20.
When the crude ribosomal fraction of Saccharomyces cerevisiae was separated into "light" and "heavy" fractions, fatty acid synthetase was concentrated in the former, whereas acetyl-Coenzyme A synthetase, fatty acid "desaturase," and squalene oxidocyclase were found in the latter. The "desaturase" sedimented with the ribosomal material and was not solubilized by low concentrations of sodium deoxycholate (DOC). The other two systems found in the "heavy" fraction sedimented with the membranes, but, upon solubilization of the membranes by DOC, these enzyme systems remained as particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号