首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transplanted bone marrow-derived cells (BMDCs) have been reported to fuse with cells of diverse tissues, but the extremely low frequency of fusion has led to the view that such events are biologically insignificant. Nonetheless, in mice with a lethal recessive liver disease (tyrosinaemia), transplantation of wild-type BMDCs restored liver function by cell fusion and prevented death, indicating that cell fusion can have beneficial effects. Here we report that chronic inflammation resulting from severe dermatitis or autoimmune encephalitis leads to robust fusion of BMDCs with Purkinje neurons and formation of hundreds of binucleate heterokaryons per cerebellum, a 10-100-fold higher frequency than previously reported. Single haematopoietic stem-cell transplants showed that the fusogenic cell is from the haematopoietic lineage and parabiosis experiments revealed that fusion can occur without irradiation. Transplantation of rat bone marrow into mice led to activation of dormant rat Purkinje neuron-specific genes in BMDC nuclei after fusion with mouse Purkinje neurons, consistent with nuclear reprogramming. The precise neurological role of these heterokaryons awaits elucidation, but their frequency in brain after inflammation is clearly much higher than previously appreciated.  相似文献   

2.
Vav3 is a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases that has been involved in functions related to the hematopoietic system, bone formation, cardiovascular regulation, angiogenesis, and axon guidance. We report here that Vav3 is expressed at high levels in Purkinje and granule cells, suggesting additional roles for this protein in the cerebellum. Consistent with this hypothesis, we demonstrate using Vav3-deficient mice that this protein contributes to Purkinje cell dendritogenesis, the survival of granule cells of the internal granular layer, the timely migration of granule cells of the external granular layer, and to the formation of the cerebellar intercrural fissure. With the exception of the latter defect, the dysfunctions found in Vav3−/− mice only occur at well-defined postnatal developmental stages and disappear, or become ameliorated, in older animals. Vav2-deficient mice do not show any of those defects. Using primary neuronal cultures, we show that Vav3 is important for dendrite branching, but not for primary dendritogenesis, in Purkinje and granule cells. Vav3 function in the cerebellum is functionally relevant, because Vav3−/− mice show marked motor coordination and gaiting deficiencies in the postnatal period. These results indicate that Vav3 function contributes to the timely developmental progression of the cerebellum.  相似文献   

3.
p75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75−/− mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type. We attribute these effects to a reduction in small conductance Ca2+-activated potassium (SK) channel activity in Purkinje cells from p75−/− mice compared with the wild type littermates. The mechanism by which p75 regulates SK channel activity appears to involve its ability to activate Rac1. In organotypic cultures of cerebellar slices, brain-derived neurotrophic factor increased RacGTP levels by activating p75 but not TrkB. These results correlate with a reduction in RacGTP levels in synaptosome fractions from the p75−/− cerebellum, but not in that from the cortex of the same animals, compared with wild type littermates. More importantly, we demonstrate that Rac1 modulates SK channel activity and firing patterns of Purkinje cells. Along with the finding that spine density was reduced in p75−/− cerebellum, these data suggest that p75 plays a role in maintaining normalcy of Purkinje cell firing in the cerebellum in part by activating Rac1 in synaptic compartments and modulating SK channels.  相似文献   

4.
Aldolase C, also known as Zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+), alternating with stripes of Purkinje cells with little or no expression (ZII-). The patterns of ZII+ and ZII- stripes in the cerebellum of birds and mammals are strikingly similar, suggesting that it may have first evolved in the stem reptiles. In this study, we examined the expression of ZII in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). In contrast to birds and mammals, the cerebellum of the rattlesnake is much smaller and simpler, consisting of a small, unfoliated dome of cells. A pattern of alternating ZII+ and ZII- sagittal stripes cells was not observed: rather all Purkinje cells were ZII+. This suggests that ZII stripes have either been lost in snakes or that they evolved convergently in birds and mammals.  相似文献   

5.
New emphasis has been placed upon cerebellar research because of recent reports demonstrating involvement of the cerebellum in non-motor cognitive behaviors. Included in the growing list of cognitive functions associated with cerebellar activation is working memory. In this study, we explore the potential role of the cerebellum in spatial working memory using a mouse model of Purkinje cell loss. Specifically, we make aggregation chimeras between heterozygous lurcher (Lc/+) mutant embryos and +/+ (wildtype) embryos and tested them in the delayed matching-to-position (DMTP) task. Lc/+ mice lose 100% of their Purkinje cells postnatally due to a cell-intrinsic gain-of-function mutation. Lc/+<->+/+ chimeras therefore have Purkinje cells ranging from 0 to normal numbers. Through histological examination of chimeric mice and observations of motor ability, we showed that ataxia is dependent upon both the number and distribution of Purkinje cells in the cerebellum. In addition, we found that Lc/+ mice, with a complete loss of Purkinje cells, have a generalized deficit in DMTP performance that is probably associated with their motor impairment. Finally, we found that Lc/+<->+/+ chimeric mice, as a group, did not differ from control mice in this task. Rather, surprisingly, analysis of their total Purkinje cells and performance in the DMTP task revealed a significant negative relationship between these two variables. Together, these findings indicate that the cerebellum plays a minor or indirect role in spatial working memory.  相似文献   

6.
Quantitative analysis has been carried out on semithin sections of cerebellum cortex to investigate the relation between Purkinje cells with different dyeing properties. The number of dark Purkinje cells was found to increase after a month-long food rehabilitation of ill-fed mice. At the same time addition of carnitine to the mouse food has resulted in a significant decline in the number of dark Purkinje cells, as compared to control animals. The data obtained suggest that the rising number of dark Purkinje cells in the cerebellum cortex under conditions of malnutrition is probably due to the increased intracellular accumulation of free fatty acids.  相似文献   

7.
In sagittal cerebellum sections, morphometrical study of cerebellum of mature-born animals - guinea pigs - was performed using Nissl's procedure. A change of shape and volume of Purkinje cells and their nuclei in the course of the guinea pig postnatal ontogenesis was studied. It has been shown that both the growth process itself and the rate of formation of the definite form of Purkinje cells and of their nuclei in the course of ontogenesis proceeds non-uniformly. The most intensive growth of vertical and horizontal diameters of Purkinje cells and of their nuclei is observed during the 1st and 4th weeks of postnatal life. Especially rapid is an increase of horizontal diameters of Purkinje cells and of their nuclei, which impairs the ovoid-bear-like shape to the cerebellar Purkinje cells of adult guinea pigs.  相似文献   

8.
Mitochondrial fusion protects against neurodegeneration in the cerebellum   总被引:16,自引:0,他引:16  
Chen H  McCaffery JM  Chan DC 《Cell》2007,130(3):548-562
Mutations in the mitochondrial fusion gene Mfn2 cause the human neurodegenerative disease Charcot-Marie-Tooth type 2A. However, the cellular basis underlying this relationship is poorly understood. By removing Mfn2 from the cerebellum, we established a model for neurodegeneration caused by loss of mitochondrial fusion. During development and after maturity, Purkinje cells require Mfn2 but not Mfn1 for dendritic outgrowth, spine formation, and cell survival. In vivo, cell culture, and electron microscopy studies indicate that mutant Purkinje cells have aberrant mitochondrial distribution, ultrastructure, and electron transport chain activity. In fibroblasts lacking mitochondrial fusion, the majority of mitochondria lack mitochondrial DNA nucleoids. This deficiency provides a molecular mechanism for the dependence of respiratory activity on mitochondrial fusion. Our results show that exchange of mitochondrial contents is important for mitochondrial function as well as organelle distribution in neurons and have important implications for understanding the mechanisms of neurodegeneration due to perturbations in mitochondrial fusion.  相似文献   

9.
Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia.  相似文献   

10.
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, has been found in the cerebellum of many vertebrates and in the gastrointestinal tract of African ostrich chicks, but little is known about its distribution in the cerebellum of the African ostrich. In the present study, the distribution and morphological characteristics of ghrelin-producing cells in the cerebellum of the African ostrich were investigated using immunohistochemistry. The results indicate that the cerebellum is divided into two sections: the outer cerebellar cortex and the inner medulla of cerebellum. The cerebellar cortex comprises a molecular layer, a Purkinje cell layer and a granular layer; ghrelin-immunopositive (ghrelin-ip) cells were localized throughout the entire cerebellum, but sparsely in the medulla. The greatest number of ghrelin-ip cells was found in the stratum granulosum, and the density decreased gradually from the molecular layer to the Purkinje cell layer in the cerebellar cortex. The ghrelin-ip cells were fusiform or irregular polygons and their cytoplasm was stained intensely. These results clearly demonstrate the presence of ghrelin-ip cells in the cerebellum of the African ostrich. It is speculated that ghrelin may have a physiological function in the cerebellum.  相似文献   

11.
In sagittal cerebellum sections, morphometrical study of cerebellum of mature-born animals—guinea pigs—was performed using Nissl’s procedure. A change of shape and volume of Purkinje cells and their nuclei in the course of the guinea pig postnatal ontogenesis was studied. It has been shown that both the growth process itself and the rate of formation of the definite form of Purkinje cells and of their nuclei in the course of ontogenesis proceeds non-uniformly. The most intensive growth of vertical and horizontal diameters of Purkinje cells and of their nuclei is observed during the 1st and 4th weeks of postnatal life. Especially rapid is an increase of horizontal diameters of Purkinje cells and of their nuclei, which impairs the ovoid-bear-like shape to the cerebellar Purkinje cells of adult guinea pigs.  相似文献   

12.
Ethanol exposure during development leads to alterations in neuronal differentiation and profound neuronal loss in multiple regions of the developing brain. Although differentiating Purkinje cells of the cerebellum are particularly vulnerable to ethanol exposure, the mechanisms that ameliorate ethanol-induced Purkinje cell loss have not been well defined. Previous research indicates that glial-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β family, promotes the survival of several neuronal populations, including cerebellar Purkinje cells. Therefore, we examined whether GDNF could attenuate ethanol-induced Purkinje cell loss in an in vitro model system using calbindin-D28k-immunoreactivity as a specific marker for Purkinje cells. We found that ethanol led to a significant dose-related decline in calbindin-D28k-immunoreactive cells in explant cultures of the developing cerebellum. However, concurrent administration of GDNF led to a significant rescue of calbindin-D28k-immunoreactive cells. Therefore, our results suggest that GDNF prevents ethanol-associated Purkinje cell loss. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 835–847, 1997  相似文献   

13.
The expression of follicle-stimulating hormone (FSH) and its receptor in extrapituitary and non-HPG axis tissues has been demonstrated and their non-reproductive functions in these tissues have been found. However, there have been no reports concerning the expression and function of FSH and its receptor in the cerebellum. In our study, immunofluorescence staining and in situ hybridization were used to detect the expression of FSH, double-labeled immunofluorescence staining was used to detect co-localization of FSH and its receptor and co-localization of FSH and gonadotropin-releasing hormone (GnRH) receptor in the rat cerebellar cortex. Results showed that some cells of the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex showed both FSH immunoreactivity and FSH mRNA positive signals; not only for FSH and FSH receptor, but also for FSH and GnRH receptor co-localized in some cells throughout the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex. These suggested that rat cerebellum could express FSH; cerebellum is a target tissue of FSH; FSH may exert certain functions through FSH receptor in a paracrine or autocrine manner; GnRH may regulate FSH positive cells through GnRH receptor in the cerebellum. Our study provides morphological evidence for further functional research on FSH and related hormones in the cerebellum.  相似文献   

14.
The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.  相似文献   

15.
The cerebellum, a structure derived from the dorsal part of the most anterior hindbrain, is important for integrating sensory perception and motor control. While the structure and development of the cerebellum have been analyzed most extensively in mammals,recent studies have shown that the anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost) species, including zebrafish. In the mammalian and teleost cerebellum,Purkinje and granule cells serve, respectively, as the major GABAergic and glutamatergic neurons. Purkinje cells originate in the ventricular zone (VZ), and receive inputs from climbing fibers. Granule cells originate in the upper rhombic lip (URL) and receive inputs from mossy fibers. Thus, the teleost cerebellum shares many features with the cerebellum of other vertebrates, and isa good model system for studying cerebellar function and development. The teleost cerebellum also has features that are specific to teleosts or have not been elucidated in mammals, including eurydendroid cells and adult neurogenesis. Furthermore, the neural circuitry in part of the optic tectum and the dorsal hindbrain closely resembles the circuitry of the teleost cerebellum; hence,these are called cerebellum-like structures. Here we describe the anatomy and development of cerebellar neurons and their circuitry, and discuss the possible roles of the cerebellum and cerebellum-like structures in behavior and higher cognitive functions. We also consider the potential use of genetics and novel techniques for studying the cerebellum in zebrafish.  相似文献   

16.
Summary Rats were dosed with methylmercuric chloride, either by gastric gavage (5 × 10 mg kg-1 body weight over a 15-day period), or in their drinking water (20 mg methylmercuric chloride l–1 for 14 or 42 days). Localization of mercury within the cerebellum was performed with a silver physical development technique, and metallothionein with dinitrophenyl hapten-sandwich immunohistochemistry. Mercury was detected in structurally undamaged Purkinje neurones and adjacent Bergmann glial cells; no mercury was detected in granule cells even though these small cells nearest the Purkinje layer had a high incidence of pyknotic nuclei. In general, metallothionein was detected mainly in Bergmann glial cells, Purkinje cells, astrocytes and glial cells of white matter; no metallothionein was detected in granule cells. We hypothesized that the resistance of Purkinje cells to methylmercuric chloride reflects their ability to transform organic mercurials to inorganic mercury that, in turn, induces the synthesis of radical-scavenging metallothionein molecules.  相似文献   

17.
A monoclonal antibody designated M2 arose from the fusion of mouse myeloma cells with splenocytes from a rat immunized with particulate fraction from early postnatal mouse cerebellum. Expression of M2 antigen was examined by indirect immunofluorescence on frozen sections of developing and adult mouse cerebellum and on monolayer cultures of early postnatal mouse cerebellar cells. In adult cerebellum, M2 staining outlines the cell bodies of granule and Purkinje cells. A weaker, more diffuse staining is seen in the molecular layer and white matter. In sections of newborn cerebellum, M2 antigen is weakly detectable surrounding cells of the external granular layer and Purkinje cells. The expression of M2 antigen increases during development in both cell types, reaching adult levels by postnatal day 14. At all stages of postnatal cerebellar development, granule cells that have completed migration to the internal granule layer are more heavily stained by M2 antibodies than are those before and in process of migration. In monolayer cultures, M2 antigen is detected on the cell surface Of all GFA protein-positive astrocytes and on more immature oligodendrocytes, that express 04 antigen but not 01 antigen. After 3 days in culture, tetanus toxinpositive neurons begin to express M2 antigen. The same delayed expression of M2 antigen on neurons is observed in cultures derived from mice ranging in age from postnatal day 0 to 10.  相似文献   

18.
19.
We have isolated a monoclonal antibody that recognizes a 42-kDa protein from adult zebrafish brain. The antibody stains the typical drop-shaped perikaryon of Purkinje cells and their dendrites. The cerebellum of teleosts has complex features. It is composed of three parts; the valvula cerebelli (Va), the corpus cerebelli (CCe), and the crista cerebellaris (CC). In higher vertebrates, the molecular layer is always found as the most outer layer of the cerebellum, but in teleosts, some of the granular cells are located on the surface of the Va. In higher vertebrates, the boundary between the granular and molecular layers always contains Purkinje cells, but this does not occur in teleosts. The Purkinje cells are found only in a part of the boundary in Va. We have found that the layer containing Purkinje cells forms a continuous zone in the cerebellum in the zebrafish. The complex structure of the cerebellum is more easily understood with the aid of the concept of a "Purkinje zone". The Purkinje zone starts at the caudal end of Val (lateral division of Va), turns at the edge of Va toward Vam (medial division of Va), connects to CCe, and ends at the bottom of CCe. The dendrites are found only on one side of the zone. The dendrites of the Purkinje cells in Vam are planar and are packed regularly, similar to those of higher vertebrates. However, the dendrites in Val and the posterior part of CCe are not planar and are irregularly packed.  相似文献   

20.
A study was made of the susceptibility of Purkinje cells to long-term plasticity changes produced by joint stimulation of two inputs: the parallel and the climbing fibers. Experiments were conducted on a preparation of isolated frog cerebellum, joined to the medulla by one peduncle. A total of 18 neurons were investigated which showed a monosynaptic response to stimulation of the parallel fibers and maintained stable background activity over a 2 h period. Curves were plotted throughout this time for the likelihood of a reaction occurring in Purkinje cells in response to stimulation of the parallel fibers. Level of current required to stimulate a Purkinje cell firing index of 0.5 (I0.5) was calculated. Neurons in which compound response to the "climber" type had been produced by stimulating the medulla showed a I0.5 of 0.7 (less than one unit) at the start and finish of experiments, which would suggest an increase in the efficacy of the synapses of parallel fibers in Purkinje cells when parallel and climbing fibers are stimulated simultaneously.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 156–164, March–April, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号