首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas putida cells were unable to pass the inter-vessel pit membranes of the xylem system of cut roses ( Rosa hybrida cv. 'Sonia'). It was further shown that (1) the number of bacteria which infiltrated into the xylem vessels decreased with increased distance between the cutting point and sampling point; (2) the number of bacteria which infiltrated into the open xylem vessels increased with time and with increasing numbers of pseudomonas cells; (3) only a minor part of the pseudomonas cells homogeneously suspended in the vase solution was able to infiltrate into the xylem vessels of the cut roses up to a distance from the cutting point of > 1 cm; and (4) even low levels of infiltrated pseudomonas cells could be demonstrated by measurements of the water conductivity of stem segments. More research is needed to reveal which mechanisms (e.g. gumnosis) might have contributed, directly or indirectly, to the prevention of further infiltration of bacterial particles into the cut open vascular system of the Rosa cultivar.  相似文献   

2.
Pure cultures of five microbial species were used to test the formation of exopolysaccharides (EPS) when grown in agitated sucrose (5% w/v) containing liquid cultures. These test species were isolated from stems of freshly harvested cut flowers ( Chrysanthemum, Gerbera and Rosa ) or from the vase water of these flower cultivars. The partial conversion of sucrose into other saccharides was demonstrated by HPLC and colorimetric analysis. The final polymeric character of the newly formed saccharides was investigated. SEM preparations of xylem vessels of Rosa maintained in EPS-containing vase water showed blockage, disorganization and injury of the vessel structure. EPS were shown not to pass the xylem pit membranes. Recovery from the first symptoms of disturbed water flow (wilting) due to EPS was possible in young flowers by cutting off the blocked part of the stem (15–20 cm. The higher the microbial conversion rate of sucrose into polysaccharides, the more disturbed were the water relations of the roses placed in the EPS-containing fluid, as was demonstrated by the decrease of: (1) water conductivity of Rosa stem segments (ml/30 min); (2) water uptake (ml/d); (3) Rosa vase life (d); and (4) flower bud development. Bacterial EPS (presumably levans and dextrans) could be concentrated in the retentate by molecular filtration with a cut-off level of 10000 Da. Filtrates did not cause Rosa xylem blockage and 'bent-neck'of the flower stems, but still may be toxic to roses. Two simple methods were also used for diagnostic investigations: (1) the beetroot tissue cube test to detect microbial products causing injury of the plant cell membranes, (2) the acid fuchsin test, to show the extent and location of Rosa xylem vessel occlusion.  相似文献   

3.
It has been suggested that oligogalacturonides (OGAs) released by bacterial pectinases can induce plant defence responses. To test this hypothesis, resistant tomato cultivar LS-89 and susceptible cultivar Ponderosa were inoculated with either wild-type Ralstonia solanacearum strain K60 or a pectinase-deficient triple mutant K60-509, which lacks endo-polygalacturonase PehA, exo-poly-alpha- d -galacturonosidase PehB, and pectin methylesterase Pme. K60 induced structural defence responses, including electron-dense materials (EDMs) in vessels and apposition layers (ALs) in parenchyma cells adjacent to xylem vessels colonized by bacteria in LS-89 stems. In contrast, LS-89 infected with K60-509 did not have any EDMs in vessels at 4 days after inoculation (DAI), and had them only rarely at 7 DAI. In LS-89 infected with K60-509, ALs were rarely observed in parenchyma cells adjacent to vessels at 4 DAI, and while they were present at 7 DAI, they were thinner than ALs induced by K60. The bacterial density in LS-89 stems infected with K60-509 was lower than in stems infected with K60 at 4 DAI, but the strains reached similar population sizes by 7 DAI, showing the pectinase-deficient mutant colonized resistant stems more slowly than did the wild-type strain. Vessels infected with K60-509 contained fewer EDMs at 7 DAI than were observed at either 4 or 7 DAI in vessels colonized by K60, although bacterial density in the xylem tissues containing K60-509 at 7 DAI was about the same as in the xylem tissues containing K60 at 4 DAI. Neither the wild-type strain nor the pectinase-deficient mutant induced these histopathological changes on susceptible cultivar Ponderosa. These results indicate that R. solanacearum pectinases play some role in eliciting histopathological changes in LS-89, likely by releasing OGAs that trigger plant structural defences.  相似文献   

4.
Flowering stems of lilac wilt within a few days of cutting and placing in water, probably as a consequence of xylem blockage. The aim of this study was to identify the types of occlusions blocking xylem vessels during the postharvest life of common lilac stems cut between March and May, and the possible associations of these occlusions with the holding solution used. Scanning electron microscope observations of the basal parts of cut lilac stems (1–5 cm) revealed that the blockage of xylem vessels was caused primarily by tyloses and less so by microorganisms. The number of tyloses depended on the holding solution used during the postharvest life. The biggest number of tyloses was observed in stems kept in water in all harvesting periods. In this solution, in ca 40% of observed vessels, tyloses were visible. The highest number of tyloses according to harvesting period was observed in May.  相似文献   

5.
The presence of chlorine in solution (bleach), a slow release chlorine (DICA), a quaternary ammonium compound (benzalkonium chloride), a hydroxyquinoline compound (HQC), or aluminium sulphate in the vase water decreased the number of bacteria in stems of cut 'Sonia'roses, with respect to untreated controls. However, when the concentration of the antimicrobial compound was high enough to reduce the number of bacteria in stems (measured after 7 d of vase life) to below the detection limit, the roses showed severe leaf chlorosis and leaf abscission. Benzalkonium chloride resulted in damage at a concentration just enough to reduce the number of bacteria in stems. Effects of HQC, aluminium sulphate, and silver nitrate on the number of bacteria were variable. In experiments in which HQC was relatively ineffective, only one bacterial strain was found in the stem. This strain grew on HQC concentrations as high as 400 mg/l, and was identified as Pseudomonas fluorescens . and accepted 8 June 1989  相似文献   

6.
For a long time it was thought that Bursaphelenchus xylophilus was the only agent of the pine wilt disease. Recently, it was discovered that there are bacteria associated with the nematodes that contribute to the pathogenesis of this disease, mainly through the release of toxins that promote the death of the pines. Among the species most commonly found, are bacteria belonging to the Bacillus, Pantoea, Pseudomonas and Xanthomonas genera.The main objective of this work was to study the effect of inoculation of maritime pine (Pinus pinaster) with four different nematode isolates, in the bacterial population of nematodes and trees, at different stages of disease progression. The monitoring of progression of disease symptoms was also recorded. Also, the identification of bacteria isolated from the xylem of trees and the surface of nematodes was performed by classical identification methods, by the API20E identification system and by sequencing of bacterial DNA.The results showed that for the symptoms progression, the most striking difference was observed for the pines inoculated with the avirulent isolate, C14-5, which led to a slower and less severe aggravation of symptoms than in pines inoculated with the virulent isolates. In general, it was found that bacterial population, inside the tree, increased with disease progression. A superior bacterial quantity was isolated from pines inoculated with the nematode isolates HF and 20, and, comparatively, few bacteria were isolated from pines inoculated with the avirulent isolate. The identification system API20E was insufficient in the identification of bacterial species; Enterobacter cloacae species was identified in 79% of the isolated bacterial colonies and seven of these colonies could not be identified by this method. Molecular identification methods, through bacterial DNA sequencing, allowed a more reliable identification: eleven different bacterial species within the Bacillus, Citrobacter, Enterobacter, Escherichia, Klebsiella, Paenibacillus, Pantoea and Terribacillus genera were identified. General bacterial diversity increased with the progression of the disease. Bacillus spp. were predominant at the earlier stage of disease progression and Klebsiella oxytoca at the later stages. Furthermore, bacterial species isolated from the surface of nematodes were similar to those isolated from the xylem of pines.In the present work new bacterial species were identified which have never been reported before in this type of study and may be associated with their geographical origin (Portugal). P. pinaster, the pine species used in this study, was different from those commonly grown in Japan and China. Furthermore, it was the first time that bacteria were isolated and identified from an avirulent pine wood nematode isolate.  相似文献   

7.
To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria.  相似文献   

8.
Plant surfaces are a favourable niche for bacterial establishment, and hypothetically, plant species differ in their capacity to harbour epiphytic bacterial communities. This study was conducted to evaluate and describe the structural relationship of a bacterial community at the phyllosphere level with different plant species in a tropical ecosystem. Leaf blades of 47 plant species distributed in 27 botanical families were collected on a typical small Brazilian farm and prepared for observation under light and scanning electron microscopy. Naturally occurring bacteria were the most abundant settlers of the phylloplane, followed by fungal spore or hyphae. All plant species studied were colonized by phylloepiphytic bacteria, which were observed as solitary cells, microcolonies, and biofilms. However, independent of the family, the plant species differed in the pattern of phyllosphere colonization, as reflected in bacteria frequency and presence or absence of anatomical features that would favour the association. The phylloepiphytic bacteria were preferentially established on the following sites: epidermal cell wall junctions, glandular and nonglandular trichomes, veins, stomata, and epidermal cell wall surface. Profuse bacteria and fungi colonization was observed, at a level that was at least comparable with temperate regions. Interestingly, fungi seemed to alter the bacteria colonization pattern, most probably by microenvironmental modifications. The trichome type and density as well as the presence of epicuticular wax on the leaf blade surface seemed to be the most determinant anatomical features for the pattern of phyllosphere colonization. The presence of trichomes has a favourable, and epicuticular wax an unfavourable influence on the plant-bacteria interaction.  相似文献   

9.
The distribution and appearance of Ralstonia solanacearum in the upper hypocotyl tissues of root‐inoculated tomato seedlings of resistant rootstock cultivar LS‐89 (a selection from Hawaii 7998) and susceptible cultivar Ponderosa were compared to clarify the mechanism that limits the movement of the bacterial pathogen in resistant tomato tissues. In stems of wilted Ponderosa plants, bacteria colonized both the primary and the secondary xylem tissues. Bacteria were abundant in vessels, of which the pit membranes were often degenerated. All parenchyma cells adjacent to vessels with bacteria were necrotic and some of them were colonized with bacteria. In stems of LS‐89 plants showing no discernible wilting symptoms, bacteria were observed in the primary xylem tissues but not in the secondary xylem tissues. Necrosis of parenchyma cells adjacent to vessels with bacteria was observed occasionally. The pit membranes were often thicker with high electron density. The inner electron‐dense layer of cell wall of parenchyma cells and vessels was thicker and more conspicuous in xylem tissues of infected LS‐89 than in xylem of infected Ponderosa or mock‐inoculated plants. Electron‐dense materials accumulated in or around pit cavities in parenchyma cells next to vessels with bacteria, and in vessels with bacteria. Many bacterial cells appeared normal in vessels, except for those in contact with the pit membranes. These results indicate that R. solanacearum moves from vessel to vessel in infected tissues through degenerated pit membranes and that restricted movement in xylem tissues was the characteristic feature in LS‐89. The limitation in bacterial movement may be related to the thickening of the pit membranes and/or the accumulations of electron‐dense materials in vessels and parenchyma cells.  相似文献   

10.
Grapevine trunk diseases (GTD), caused by a wide range of different fungi, are responsible for decline and productivity losses in vines at all growth stages. Grapevine responses to fungal attack include morphological and physiochemical defence mechanisms in the vascular system to reduce fungal infections. However, the extent to which these responses could control further spread by GTD‐fungi in the xylem vessels is poorly known. This study shows the formation of tyloses inside xylem vessels of diseased grapevines, as well as extracellular ligninolytic activities [lignin peroxidase, manganese peroxidase (MnP) and/or laccase] exhibited by some GTD‐fungi isolated here from symptomatic grapevines. In particular, Botryosphaeriaceae spp. and Phaeoacremonium minimum showed all three lignin‐degrading enzymatic activities. We also examined whether selected vine phenolic compounds, often located in the vascular system in response to fungal infection, could affect the lignin‐degrading activity from those GTD‐fungi as well as fungal colonisation. We found that phenolic compounds appeared to inhibit MnP activity, in addition to reducing fungal growth by causing anomalies in the hyphae morphology. Our results support that affected grapevines can initiate the tylosis formation in order to constrain fungi in the xylem vessels, while highlight the complementary action of the phenolic compounds to inhibit the fungi growth and colonisation. Phenolic compounds are therefore likely to have important role in alternative strategies for preventing trunk diseases.  相似文献   

11.
Transgenic canola plants containing high, constitutive levels of bean endochitinase have been shown to be more resistant to infection by the soil-borne pathogen, Rhizoctonia solani, than are wild-type plants that lack the chimeric chitinase gene. To determine whether the resistance of the 35S-chitinase plants to Rhizoctonia infection results from an antimicrobial activity of the bean chitinase in planta, an ultrastructural and cyto-chemical study was performed on infected control and transgenic canola plants. Analysis of root tissues of infected wild-type canola plants revealed that R. solani was capable of extensive tissue colonization including the xylem vessels. Pathogen ingress towards the vascular system was associated with marked host cell wall alterations such as disruption of middle lamella matrices that occurred in advance of fungal penetration. Fungal hyphae colonizing these tissues appeared metabolically active as judged by their typical morphological features and their extensive multiplication. In infected transgenic plants, however, the pattern of fungal colonization was different to that observed in wild-type plants. Penetration of the host cuticle and epidermis was frequently observed, but fungal colonization was usually restricted to the cortex although, in a few cases, some fungal cells could be seen in xylem vessels. In all samples examined, severe hyphal alterations ranging from increased vacuolization to cell lysis were seen. Hyphae occasionally seen in xylem vessels were markedly damaged and often reduced to convoluted wall fragments. Cytochemical labeling of chitin using the WGA/ovomucoid-gold complex showed that hyphal alterations correlated with extensive chitin degradation. Thus, reduction in fungal biomass, increase in hyphal alterations leading to fungal lysis and chitin breakdown appear to be typical features observed in transgenic canola plants. Because these features were not seen in infected wild-type plants, it is likely that constitutive expression of the bean endochitinase gene is, at least in part, responsible for the enhanced protection against fungal attack observed in these plants. It is not known, however, if other components of the host defense response contribute to the resistance phenotype.  相似文献   

12.
A new method is presented that enables the induction of embolisms in a fraction of all xylem vessels, based on diameter, at one cut end of a stem segment. The method is based on the different capillary characteristic of xylem vessels of different cross-sectional size. To verify the method, air embolisms were induced in cut xylem vessels of chrysanthemum (Dendranthemaxgrandiflorum Tzvelev cv. Cassa) stem segments at different xylem tensions and compared with the distribution of gas-filled vessels as visualized by cryo-scanning electron microscopy (Cryo-SEM). At -6 kPa xylem pressure, air-entrance was only induced in large diameter vessels (>30 microm), while at -24 kPa embolisms were induced in almost all xylem vessels (>10 microm). Although the principle of the embolization method worked well, smaller diameter vessels were observed to be embolized than was expected according to the calculations. The role of cross-sectional shape and contact angle between xylem sap and vessel wall at the menisci are discussed. After correction for the observed (diameter independent) deviation from circularity of the cross-sectional vessel shape the contact angle was calculated to be approximately 55 degrees. Hydraulic resistance (Rh) measurements before and after embolization showed that the effect of embolizing only large diameter cut xylem vessels had only a small influence on overall Rh of a stem segment. Embolizing all cut xylem vessels at one cut end almost trebled overall Rh. The difference was discussed in the light of the networking capacity of the xylem system.  相似文献   

13.
Attachment of certain bacteria to living arbuscular mycorrhizal fungal extraradical hyphae may be an important prerequisite for interactions between these microorganisms, with implications for nutrient supply and plant health. The attachment of five different strains of gfp-tagged soil bacteria (Paenibacillus brasilensis PB177 (pnf8), Bacillus cereus VA1 (pnf8), Pseudomonas fluorescens SBW25 :: gfp/lux, Arthrobacter chlorophenolicus A6G, and Paenibacillus peoriae BD62 (pnf8)) to vital and nonvital extraradical hyphae of the arbuscular mycorrhizal fungi Glomus sp. MUCL 43205 and Glomus intraradices MUCL 43194 was examined. Arthrobacter chlorophenolicus did not attach to hyphae, whereas the other bacterial strains did to a varying degree. Only P. brasilensis showed greater attachment to vital hyphae than nonvital hyphae of both Glomus species tested. Pseudomonas fluorescens showed a higher attachment to vital compared with nonvital Glomus sp. MUCL 43205 hyphae, whereas this relationship was opposite for attachment to G. intraradices. Both B. cereus and P. peoriae showed higher attachment to nonvital hyphae. This study provides novel evidence that under laboratory conditions soil bacteria differ in their ability to colonize vital and nonvital hyphae and that this can also be influenced by the arbuscular mycorrhizal fungal species involved. The significance of bacterial attachment to mycorrhizal fungal extraradical hyphae is discussed.  相似文献   

14.
Lichen-forming fungi have been assumed to be more or less restricted to the surface of the substrate on which they grow, Conclusive identification of hyphae or an assessment of the fungal diversity inside lichen-covered rock has not been possible using methods based on direct observation. We circumvented this problem by using a DNA sequencing approach. Cores were drilled from a Devonian arcosic sandstone rock harboring the crustose lichen Ophioparma ventosa (L.) Norman on the surface. The cores were cut vertically, and DNA was extracted from the pulverized rock slices. A series of polymerase chain reactions using fungal-specific primers as well as Ophioparma ventosa specific primers were employed to amplify the internal transcribed spacer region of the nuclear ribosomal DNA. The results show that hyphae of O. ventosa penetrate approximately 10–12 mm into the rock. Consequently, the hyphal layer formed by the lichen fungus inside the rock could be 7–12 times as thick as the symbiotic thallus at the surface of the rock. In addition, eight non-lichenized fungal taxa and five that could not be identified to species were encountered. One fungal species in the order Helotiales occurs in six of the eight cores. The significance of these results to the colonization and weathering of rock by lichenized fungi is discussed.  相似文献   

15.
The influence exerted by Pseudomonas fluorescens, strain 63-28R, in stimulating plant defense reactions was investigated using an in-vitro system in which Ri T-DNA-transformed pea (Pisum sativum L.) roots were subsequently infected with Pythium ultimum. Cytological investigations of samples from P. fluorescens-inoculated roots revealed that the bacteria multiplied abundantly at the root surface and colonized a small number of epidermal and cortical cells. Penetration of the epidermis occurred through the openings made by the disruption of the fibrillar network at the junction of adjacent epidermal cell walls. Direct cell wall penetration was never observed and bacterial ingress into the root tissues proceeded via an intercellular route. Striking differences in the extent of fungal colonization were observed between bacterized and non-bacterized pea roots following inoculation with P. ultimum. In non-bacterized roots, the pathogen multiplied abundantly through most of the tissues while in bacterized roots, pathogen growth was restricted to the epidermis and the outer cortex. At the root surface, the bacteria interacted with the pathogen, in a way similar to that observed in dual culture tests. Most Pythium cells were severely damaged but fungal penetration by the bacteria was never observed. Droplets of the amorphous material formed upon interaction between the bacteria and the host root were frequently found at the fungal cell surface. Incubation of sections with a -1,4-exoglucanase-gold complex revealed that the cell wall of markedly altered Pythium hyphae was structurally preserved. Successful penetration of the root epidermis was achieved by the few hyphae of P. ultimum that could escape the first defensive line in the rhizosphere. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. The unusual occurrence of polymorphic wall appositions along the host epidermal cells was an indication that the host plant was signalled to defend itself through the elaboration of physical barriers.Abbreviations AGL Aplysia gonad lectin - PGPR plant growth-promoting rhizobacteria The authors wish to thank Sylvain Noël for excellent technical assistance. This study was supported by grants from the Fonds Québécois pour la formation de chercheurs et l'Aide à la Recherche (FCAR), the Natural Sciences and Engineering Council of Canada (NSERC) and the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie (SYNERGIE).  相似文献   

16.
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml−1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.  相似文献   

17.
The fungal flora in different parts of a beech forest ecosystem was investigated through a four year period as part of an IBP project. Both colony counts and direct measurements of fungal mycelium indicated that a vast majority of the fungal biomass is concentrated in the upper horizons of the soil, especially in the mull layer. The litter also contained large amounts of fungi when calculated per g dry weight, but still the litter fungi accounted for only a quite small percentage of the total fungal biomass. The fungi growing in direct contact with the living plants, i.e. in the rhizosphere and phylloplane, also accounted for only a few per cent of the total amount of fungi in the ecosystem.
On basis of direct measurements of fungal mycelium the total biomass was estimated to be about 100 g dry wt per m2. However, no attempts were made to distinguish between living and dead hyphae, and a large proportion of the observed hyphae may very well be dead or inactive.
Qualitative studies revealed that the upper soil layers not only contained the largest amounts of fungal mycelium, but also by far the highest species diversity. Other parts of the ecosystem, e.g. the phylloplane, were often strongly dominated by one or a few species, whereas soil always contained a large variety of different types.  相似文献   

18.
Growth and anatomical responses of plants during latent and pathogenic infection by fungal pathogens are not well understood. The interactions between soybean (Glycine max) and two types of the pathogen Phialophora gregata were investigated to determine how plants respond during latent and pathogenic infection. Stems of soybean cultivars with different or no genes for resistance to infection by P. gregata were inoculated with wildtype or GFP and RFP-labeled strains of types A or B of P. gregata. Plants were sectioned during latent and pathogenic infection, examined with transmitted light or fluorescent microscopy, and quantitative differences in vessels and qualitative differences in infection were assessed using captured images. During latent infection, the number of vessels was similar in resistant and susceptible plants infected with type A or B compared to the control, and fungal infection was rarely observed in vessels. During pathogenic infection, the resistant cultivars had 20 to 25% more vessels than the uninfected plants, and fungal hyphae were readily observed in the vessels. Furthermore, during the pathogenic phase in a resistant cultivar, P.gregata type A-GFP was limited to outside of the primary xylem, while P.gregata type B-RFP was observed in the primary xylem. The opposite occurred with the susceptible cultivar, where PgA-GFP was observed in the primary xylem and PgB-RFP was limited to the interfascicular region. In summary, soybean cultivars with resistance to BSR produced more vessels and can restrict or exclude P. gregata from the vascular system compared to susceptible cultivars. Structural resistance mechanisms potentially compensate for loss of vessel function and disrupted water movement.  相似文献   

19.
Mycorrhizas ofEntoloma clypeatum f.hybridum onRosa multiflora in the field in Japan were studied by stereo, light and electron microscopy. In most mycorrhizas, the root cap, meristem, and apical region of the cortex disappeared, but in a few mycorrhizas, these tissues remained. Fungal hyphae of the mycorrhizas invaded root tissues and branched palmately. Hyphae in contact with cortical cells were larger than those far from the root cells and contained many mitochondria, cisternae of endoplasmic reticulum and transitional vesicles. Invading hyphae were undulate in the apical part of the mycorrhiza, and some of them lacked distinct organelles. Electron-dense granules accumulated in the root cells adjacent to the fungal hyphae. Both the remnants of the plant cells and the fungal hyphae were included in the amorphous materials on the tip of the stele. These observations suggest the destructive infection by fungal hyphae of the root cells and their collapse near the tip of the stele.  相似文献   

20.
J Nair 《Stain technology》1976,51(1):47-49
Fungus-inoculated Pinus radiata leaves were fixed and then stained with periodic acid-Schiff reagent. Pieces of leaf with fungal material on the surface were removed. These pieces were stained in lactophenol cotton blue for a few minutes and then mounted in dilute lactophenol cotton blue. Microscopic examination of fungal material inside and outside the mounted leaf pieces revealed the following: condidia and germ tubes on the leaf surface were red, appressoria remained unstained, and infection hyphae within the leaf were stained blue. This differential staining method was particularly useful for distinguishing germ tubes from infection hyphae arising from appressoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号