首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In all three domains of life, extracytoplasmic proteins must overcome the hurdle presented by hydrophobic, lipid-based membranes. While numerous aspects of the protein translocation process have been well studied in bacteria and eukarya, little is known about how proteins cross the membranes of archaea. Analysis to date suggests that archael protein translocation is a mosaic of bacterial, eukaryal, and archaeal features, as indeed is much of archaeal biology. Archaea encode homologues of selected elements of the bacterial and eukaryal translocation machines, yet lack other important components of these two systems. Other aspects of the archaeal translocation process appear specific to this domain, possibly related to the extreme environmental conditions in which archsea thrive. In the following, current understanding of archaeal protein translocation is reviewed, as is recent progress in reconstitution of the archaeal translocation process in vitro.  相似文献   

2.
Over the past three decades, transport of proteins across cellular membranes has been studied extensively in various model systems. One of the major transport routes, the so-called Sec pathway, is conserved in all domains of life. Very little is known about this pathway in the third domain of life, archaea. The core components of the archaeal, bacterial and eucaryal Sec machinery are similar, although the archaeal components appear more closely related to their eucaryal counterparts. Interestingly, the accessory factors of the translocation machinery are similar to bacterial components, which indicates a unique hybrid nature of the archaeal translocase complex. The mechanism of protein translocation in archaea is completely unknown. Based on genomic sequencing data, the most likely system for archaeal protein translocation is similar to the eucaryal co-translational translocation pathway for protein import into the endoplasmic reticulum, in which a protein is pushed across the translocation channel by the ribosome. However, other models can also be envisaged, such as a bacterial-like system in which a protein is translocated post-translationally with the aid of a motor protein analogous to the bacterial ATPase SecA. This review discusses the different models. Furthermore, an overview is given of some of the other components that may be involved in the protein translocation process, such as those required for protein targeting, folding and post-translational modification.  相似文献   

3.
Recent results from engineered and natural samples show that the starkly different lipids of archaea and bacteria can form stable hybrid membranes. But if the two types can mix, why don't they? That is, why do most bacteria and all eukaryotes have only typically bacterial lipids, and archaea archaeal lipids? It is suggested here that the reason may lie on the other main component of cellular membranes: membrane proteins, and their close adaptation to the lipids. Archaeal lipids in modern bacteria could suggest that the last universal common ancestor (LUCA) had both lipid types. However, this would imply a rather elaborate evolutionary scenario, while negating simpler alternatives. In light of widespread horizontal gene transfer across the prokaryotic domains, hybrid membranes reveal that the lipid divide did not just occur once at the divergence of archaea and bacteria from LUCA. Instead, it continues to occur actively to this day. Also see the video abstract here https://youtu.be/TdKjxoDAtsg .  相似文献   

4.
5.
The set of conserved eukaryotic protein-coding genes includes distinct subsets one of which appears to be most closely related to and, by inference, derived from archaea, whereas another one appears to be of bacterial, possibly, endosymbiotic origin. The "archaeal" genes of eukaryotes, primarily, encode components of information-processing systems, whereas the "bacterial" genes are predominantly operational. The precise nature of the archaeo-eukaryotic relationship remains uncertain, and it has been variously argued that eukaryotic informational genes evolved from the homologous genes of Euryarchaeota or Crenarchaeota (the major branches of extant archaea) or that the origin of eukaryotes lies outside the known diversity of archaea. We describe a comprehensive set of 355 eukaryotic genes of apparent archaeal origin identified through ortholog detection and phylogenetic analysis. Phylogenetic hypothesis testing using constrained trees, combined with a systematic search for shared derived characters in the form of homologous inserts in conserved proteins, indicate that, for the majority of these genes, the preferred tree topology is one with the eukaryotic branch placed outside the extant diversity of archaea although small subsets of genes show crenarchaeal and euryarchaeal affinities. Thus, the archaeal genes in eukaryotes appear to descend from a distinct, ancient, and otherwise uncharacterized archaeal lineage that acquired some euryarchaeal and crenarchaeal genes via early horizontal gene transfer.  相似文献   

6.
A 2.6kb fragment of chromosomal DNA from the archaeon Methanosarcina mazeii was sequenced and analyzed, and it was found to contain coding regions for three proteins that were 321, 234, and 193 amino acids (aa) in length. Homologs of the 321-aa protein were found in all archaeal genomes examined, but not in eukaryotic or bacterial genomes, with one exception in the latter. The protein with 234aa (named PrpM) was most similar to the putative protein Prp31p from Methanobacterium thermoautotrophicum, while the 193-aa protein (named FibM) was identified as an archaeal fibrillarin homolog. Prp and fibrillarin proteins are involved in RNA processing in eukaryotes, but their functions in archaea are not yet understood. The M. mazeii PrpM was also similar to three proteins from Saccharomyces cerevisiae: Prp31p, Nop56p, and Nop58p. Prp31p is a pre-mRNA processing protein, while Nop56p and Nop58p are involved in rRNA processing and interact with fibrillarin. No homologs of either protein were found in bacteria. The archaeal fibrillarin was shorter than its eukaryotic counterpart because it lacked the N-terminal glycine-arginine-rich (GAR) domain, present in most eukaryal homologs. The archaeal prp and fibrillarin gene homologs were found adjacent to each other, whereas in eukarya these genes are on separate chromosomes. Sequence signatures typical of the eukaryal molecules were identified in the M. mazeii and the other archaeal molecules studied. The close proximity of the prp and fib genes raises the possibility of a Prp-fibrillarin interaction in archaea.  相似文献   

7.
The archaeal flagellum is a unique motility apparatus distinct in composition and likely in assembly from the bacterial flagellum. Gene families comprised of multiple flagellin genes co-transcribed with a number of conserved, archaeal-specific accessory genes have been identified in several archaea. However, no homologues of any bacterial genes involved in flagella structure have yet been identified in any archaeon, including those archaea in which the complete genome sequence has been published. Archaeal flagellins possess a highly conserved hydrophobic N-terminal sequence that is similar to that of type IV pilins and clearly unlike that of bacterial flagellins. Also unlike bacterial flagellins but similar to type IV pilins, archaeal flagellins are initially synthesized with a short leader peptide that is cleaved by a membrane-located peptidase. With recent advances in genetic transfer systems in archaea, knockouts have been reported in several genes involved in flagellation in different archaea. In addition, techniques to isolate flagella with attached hook and anchoring structures have been developed. Analysis of these preparations is under way to identify minor structural components of archaeal flagella. This and the continued isolation and characterization of flagella mutants should lead to significant advances in our knowledge of the composition and assembly of archaeal flagella.  相似文献   

8.
Sec61p/SecYEG complexes mediate protein translocation across membranes and are present in both eukaryotes and bacteria. Whereas homologues of Sec61alpha/SecY and Sec61gamma/SecE exist in archaea, identification of the third component (Sec61beta or SecG) has remained elusive. Using PSI-BLAST, the archaeal counterpart of Sec61beta has been detected. With the identification of the Sec61beta motif, functions for a universal family of archaeal proteins can be predicted and the archaeal translocon system can be definitively detected.  相似文献   

9.
The origins of modern proteomes   总被引:1,自引:0,他引:1  
Kurland CG  Canbäck B  Berg OG 《Biochimie》2007,89(12):1454-1463
Distributions of phylogenetically related protein domains (fold superfamilies), or FSFs, among the three Superkingdoms (trichotomy) are assessed. Very nearly 900 of the 1200 FSFs of the trichotomy are shared by two or three Superkingdoms. Parsimony analysis of FSF distributions suggests that the FSF complement of the last common ancestor to the trichotomy was more like that of modern eukaryotes than that of archaea and bacteria. Studies of length distributions among members of orthologous families of proteins present in all three Superkingdoms reveal that such lengths are significantly longer among eukaryotes than among bacteria and archaea. The data also reveal that proteins lengths of eukaryotes are more broadly distributed than they are within archaeal and bacterial members of the same orthologous families. Accordingly, selective pressure for a minimal size is significantly greater for orthologous protein lengths in archaea and bacteria than in eukaryotes. Alignments of orthologous proteins of archaea, bacteria and eukaryotes are characterized by greater sequence variation at their N-terminal and C-terminal domains, than in their central cores. Length variations tend to be localized in the terminal sequences; the conserved sequences of orthologous families are localized in a central core. These data are consistent with the interpretation that the genomes of the last common ancestor (LUCA) encoded a cohort of FSFs not very different from that of modern eukaryotes. Divergence of bacterial and archaeal genomes from that common ancestor may have been accompanied by more intensive reductive evolution of proteomes than that expressed in eukaryotes. Dollo's Law suggests that the evolution of novel FSFs is a very slow process, while laboratory experiments suggests that novel protein genesis from preexisting FSFs can be relatively rapid. Reassortment of FSFs to create novel proteins may have been mediated by genetic recombination before the advent of more efficient splicing mechanisms.  相似文献   

10.
Evolution of two-component signal transduction   总被引:16,自引:0,他引:16  
Two-component signal transduction (TCST) systems are the principal means for coordinating responses to environmental changes in bacteria as well as some plants, fungi, protozoa, and archaea. These systems typically consist of a receptor histidine kinase, which reacts to an extracellular signal by phosphorylating a cytoplasmic response regulator, causing a change in cellular behavior. Although several model systems, including sporulation and chemotaxis, have been extensively studied, the evolutionary relationships between specific TCST systems are not well understood, and the ancestry of the signal transduction components is unclear. Phylogenetic trees of TCST components from 14 complete and 6 partial genomes, containing 183 histidine kinases and 220 response regulators, were constructed using distance methods. The trees showed extensive congruence in the positions of 11 recognizable phylogenetic clusters. Eukaryotic sequences were found almost exclusively in one cluster, which also showed the greatest extent of domain variability in its component proteins, and archaeal sequences mainly formed species-specific clusters. Three clusters in different parts of the kinase tree contained proteins with serine-phosphorylating activity. All kinases were found to be monophyletic with respect to other members of their superfamily, such as type II topoisomerases and Hsp90. Structural analysis further revealed significant similarity to the ATP-binding domain of eukaryotic protein kinases. TCST systems are of bacterial origin and radiated into archaea and eukaryotes by lateral gene transfer. Their components show extensive coevolution, suggesting that recombination has not been a major factor in their differentiation. Although histidine kinase activity is prevalent, serine kinases have evolved multiple times independently within this family, accompanied by a loss of the cognate response regulator(s). The structural and functional similarity between TCST kinases and eukaryotic protein kinases raises the possibility of a distant evolutionary relationship.  相似文献   

11.
Signal recognition particles and their receptors target ribosome nascent chain complexes of preproteins toward the protein translocation apparatus of the cell. The discovery of essential SRP components in the third urkingdom of the phylogenetic tree, the archaea (Woese, C. R., and Fox, G. E. (1977). Proc. Natl. Acad. Sci. U.S.A. 74, 5088-5090) raises questions concerning the structure and composition of the archaeal signal recognition particle as well as the functions that route nascent prepoly peptide chains to the membrane. Investigations of the archaeal SRP pathway could therefore identify novel aspects of this process not previously reported or unique to archaea when compared with the respective eukaryal and bacterial systems.  相似文献   

12.
Phylogenomics of prokaryotic ribosomal proteins   总被引:1,自引:0,他引:1  
Yutin N  Puigbò P  Koonin EV  Wolf YI 《PloS one》2012,7(5):e36972
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.  相似文献   

13.
Lee JC  Gutell RR 《PloS one》2012,7(5):e38203
While the majority of the ribosomal RNA structure is conserved in the three major domains of life--archaea, bacteria, and eukaryotes, specific regions of the rRNA structure are unique to at least one of these three primary forms of life. In particular, the comparative secondary structure for the eukaryotic SSU rRNA contains several regions that are different from the analogous regions in the bacteria. Our detailed analysis of two recently determined eukaryotic 40S ribosomal crystal structures, Tetrahymena thermophila and Saccharomyces cerevisiae, and the comparison of these results with the bacterial Thermus thermophilus 30S ribosomal crystal structure: (1) revealed that the vast majority of the comparative structure model for the eukaryotic SSU rRNA is substantiated, including the secondary structure that is similar to both bacteria and archaea as well as specific for the eukaryotes, (2) resolved the secondary structure for regions of the eukaryotic SSU rRNA that were not determined with comparative methods, (3) identified eukaryotic helices that are equivalent to the bacterial helices in several of the hypervariable regions, (4) revealed that, while the coaxially stacked compound helix in the 540 region in the central domain maintains the constant length of 10 base pairs, its two constituent helices contain 5+5 bp rather than the 6+4 bp predicted with comparative analysis of archaeal and eukaryotic SSU rRNAs.  相似文献   

14.
Methanococcus maripaludis S2 is a methanogenic archaeon with a well-developed genetic system. Its mesophilic nature offers a simple system in which to perform complementation using bacterial and eukaryotic genes. Although information-processing systems in archaea are generally more similar to those in eukaryotes than those in bacteria, the order Methanococcales has a unique complement of DNA replication proteins, with multiple MCM (minichromosome maintenance) proteins and no obvious originbinding protein. A search for homologues of recombination and repair proteins in M. maripaludis has revealed a mixture of bacterial, eukaryotic and some archaeal-specific homologues. Some repair pathways appear to be completely absent, but it is possible that archaeal-specific proteins could carry out these functions. The replication, recombination and repair systems in M. maripaludis are an interesting mixture of eukaryotic and bacterial homologues and could provide a system for uncovering novel interactions between proteins from different domains of life.  相似文献   

15.
Archaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood. Here, we present the 2.2 Å resolution crystal structure of FlaH from the hyperthermophilic archaeon, Methanocaldococcus jannaschii. The protein has a characteristic RecA‐like fold, which has been found previously both in archaea and bacteria. We show that FlaH binds to immobilized ATP—however, it lacks ATPase activity. Surface plasmon resonance analysis demonstrates that ATP affects the interaction between FlaH and the archaeal motor protein FlaI. In the presence of ATP, the FlaH‐FlaI interaction becomes significantly weaker. A database search revealed similarity between FlaH and several DNA‐binding proteins of the RecA superfamily. The closest structural homologs of FlaH are KaiC‐like proteins, which are archaeal homologs of the circadian clock protein KaiC from cyanobacteria. We propose that one of the functions of FlaH may be the regulation of archaeal motor complex assembly.  相似文献   

16.
Archaea are prokaryotes but some of their chaperoning systems resemble those of eukaryotes. Also, not all archaea possess the stress protein Hsp70(DnaK), in contrast with bacteria and eukaryotes, which possess it without any known exception. Further, the primary structure of the archaeal DnaK resembles more the bacterial than the eukaryotic homologues. The work reported here addresses two questions: Is the archaeal Hsp70 protein a chaperone, like its homologues in the other two phylogenetic domains? And, if so, is the chaperoning mechanism of bacterial or eukaryotic type? The data have shown that the DnaK protein of the archaeon Methanosarcina mazei functions efficiently as a chaperone in luciferase renaturation in vitro, and that it requires DnaJ, and the other bacterial-type chaperone, GrpE, to perform its function. The M. mazei DnaK chaperone activity was enhanced by interaction with the bacterial co-chaperone DnaJ, but not by the eukaryotic homologue HDJ-2. Both the bacterial GrpE and DnaJ stimulated the ATPase activity of the M. mazei DnaK. The M. mazei DnaK-dependent chaperoning pathway in vitro is similar to that of the bacterium Escherichia coli used for comparison. However, in vivo analyses indicate that there are also significant differences. The M. mazei dnaJ and grpE genes rescued E.coli mutants lacking these genes, but E.coli dnaK mutants were not complemented by the M. mazei dnaK gene. Thus, while the data from in vitro tests demonstrate functional similarities between the M. mazei and E.coli DnaK proteins, in vivo results indicate that, intracellularly, the chaperones from the two species differ.  相似文献   

17.
内体分拣转运复合体(ESCRT,endosomal sorting complex required for transport)曾被认为是真核生物特有的系统,涉及膜重塑、泛素化蛋白质分拣等重要细胞生命过程。近年的研究显示,TACK(包括ThaumarchaeotaAigarchaeotaCrenarchaeotaKorarchaeota门)古菌超门中存在着一类与分泌膜囊泡、古菌病毒出胞以及细胞分裂过程等膜重塑过程相关的细胞分裂(Cdv,cell division)系统,该系统中的CdvB和CdvC是真核生物ESCRT-III和Vps4的同源蛋白,提示真核生物ESCRT系统可能起源自古菌。然而,由于TACK古菌中缺少真核生物ESCRT系统的其他关键成分,这一假设仍有争议。最近发现的阿斯加德(Asgard)古菌是一类被认为与真核生物最近缘的古菌,其基因组具有较完整的ESCRT相关蛋白的编码基因,提示真核生物的ESCRT很可能起源于阿斯加德古菌。本文首先简要介绍真核生物ESCRT系统的组成及生物学功能,然后分别总结TACK古菌的Cdv系统和阿斯加德古菌的ESCRT系统的研究进展,重点讨论它们的组成及生物学功能,为进一步了解古菌ESCRT系统与真核生物起源的关系提供参考。  相似文献   

18.
19.
干旱会直接影响水稻的生长发育,导致其产量和品质下降。在水稻中异源表达细菌RNA分子伴侣Csp能够显著提高水稻的耐旱能力,并且不影响水稻的正常生长。古菌中也发现具有类似细菌分子伴侣Csp功能的TRAM (TRM2 and MiaB)蛋白,且古菌的DNA复制、转录和翻译等过程与真核生物有着更为相似的调控方式,然而,古菌中RNA分子伴侣蛋白能否调控植物耐旱能力还未见报道。我们选取了嗜冷甲烷古菌Methanolobus psychrophilus R15中两个TRAM蛋白在水稻中进行研究,发现在水稻中过量表达Mpsy_3066和Mpsy_0643两个TRAM蛋白均能显著提高水稻苗期和成株期时对干旱胁迫的耐受能力。同时,我们在水稻原生质体中验证了TRAM蛋白可以发挥其分子伴侣的功能消除RNA的错误折叠对翻译的影响,这可能是TRAM转基因植物发挥其耐旱能力的作用机制。该工作初步展示了异源表达古菌TRAMs可以作为提高水稻耐旱能力的一种有效手段。  相似文献   

20.
Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6?? resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号