首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The structure of the complex between the 2, 3-diphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus and its 3-phosphoglycerate substrate has recently been solved, and analysis of this structure allowed formulation of a mechanism for iPGM catalysis. In order to obtain further evidence for this mechanism, we have solved the structure of this iPGM complexed with 2-phosphoglycerate and two Mn(2+) ions at 1. 7-A resolution. The structure consists of two different domains connected by two loops and interacting through a network of hydrogen bonds. This structure is consistent with the proposed mechanism for iPGM catalysis, with the two main steps in catalysis being a phosphatase reaction removing the phosphate from 2- or 3-phosphoglycerate, generating an enzyme-bound phosphoserine intermediate, followed by a phosphotransferase reaction as the phosphate is transferred from the enzyme back to the glycerate moiety. The structure also allowed the assignment of the function of the two domains of the enzyme, one of which participates in the phosphatase reaction and formation of the phosphoserine enzyme intermediate, with the other involved in the phosphotransferase reaction regenerating phosphoglycerate. Significant structural similarity has also been found between the active site of the iPGM domain catalyzing the phosphatase reaction and Escherichia coli alkaline phosphatase.  相似文献   

2.
Feng H  Dong L  Cao W 《Biochemistry》2006,45(34):10251-10259
The enzyme endonuclease V initiates repair of deaminated DNA bases by making an endonucleolytic incision on the 3' side one nucleotide from a base lesion. In this study, we have used site-directed mutagenesis to characterize the role of the highly conserved residues D43, E89, D110, and H214 in Thermotoga maritima endonuclease V catalysis. DNA cleavage and Mn(2+)-rescue analysis suggest that amino acid substitutions at D43 impede the enzymatic activity severely while mutations at E89 and D110 may be tolerated. Mutations at H214 yield enzyme that maintains significant DNA cleavage activity. The H214D mutant exhibits little change in substrate specificity or DNA cleavage kinetics, suggesting the exchangeability between His and Asp at this site. DNA binding analysis implicates the involvement of the four residues in metal binding. Mn(2+)-mediated cleavage of inosine-containing DNA is stimulated by the addition of Ca(2+), a metal ion that does not support catalysis. The effects of Mn(2+) on Mg(2+)-mediated DNA cleavage show a complexed initial stimulatory and later inhibitory pattern. The data obtained from the dual metal ion analyses lead to the notion that two metal ions are involved in endonuclease V-mediated catalysis. A catalytic and regulatory two-metal model is proposed.  相似文献   

3.
Hung HC  Chang GG  Yang Z  Tong L 《Biochemistry》2000,39(46):14095-14102
Pigeon liver malic enzyme was inhibited by lutetium ion through a slow-binding process, which resulted in a concave down tracing of the enzyme activity assay. The fast initial rates were independent of lutetium ion concentration, while the slow steady-state rates decreased with increasing Lu(3+) concentration. The observed rate constant for the transition from initial rate to steady-state rate, k(obs), exhibited saturation kinetics as a function of Lu(3+) concentration, suggesting the involvement of an isomerization process between two enzyme forms (R-form and T-form). The binding affinity of Lu(3+) to the R-form is weaker (K(d,Lu) = 14 microM) than that of Mn(2+) (K(m,Mn) = 1.89 microM); however, Lu(3+) has much tighter binding affinity with the T-form ( = 0.83 microM). Lu(3+) was shown to be a competitive inhibitor with respect to Mn(2+), which suggests that Lu(3+) and Mn(2+) are competing for the same metal binding site of the enzyme. These observations are in accordance with the available crystal structure information, which shows a distorted active site region of the Lu(3+)-containing enzyme. Other divalent cations, i.e., Fe(2+), Cu(2+), or Zn(2+), also act as time-dependent slow inhibitors for malic enzyme. The dynamic quenching constants of the intrinsic fluorescence for the metal-free and Lu(3+)-containing enzymes are quite different, indicating the conformational differences between the two enzyme forms. The secondary structure of these two enzyme forms, on the other hand, was not changed. The above results indicated that replacement of the catalytically essential Mn(2+) by other metal ions leads to a slow conformational change of the enzyme and consequently alters the geometry of the active site. The transformed enzyme conformation, however, is unfavorable for catalysis. Both the chemical nature of the metal ion and its correct coordination in the active site are essential for catalysis.  相似文献   

4.
According to the comparison of amino acid sequence between PGA (Penicillin G Acylase) and PBPs (Penicillin Binding Protein), We suggest that No. 565-595 peptide fragment in beta-subunit of PGA may be a substrate-binding site of enzyme. Plasmid pTZGA was constructed by cloning the 2.6 kb PGA gene of pWGA into phagemid pTZ18U The technique of site-specific mutagenesis was used to study the role of residue No. 579 (Ser) and No. 580 (Arg) of PGA. Four kinds of mutants were obtained (Ser579-->Gly579, Arg580-->Gly580, Arg580-->Glu580, Arg580-->Lys580), both Glu580 and Gly580 mutants showed no activity of enzyme and Lys580 mutant remained 30% and Gly579 mutant kept 70% activity of wilde type. The same protein expression of four mutants according to the results of ELISA indicate that mutation does not affect the expression of PGA, but Arg580 residue may be essential for substrate-binding or catalysis of PGA.  相似文献   

5.
When soluble extracts of the extreme acidothermophilic archaeon Sulfolobus solfataricus were incubated with [gamma-(32)P]ATP, several proteins were radiolabeled. One of the more prominent of these, which migrated with a mass of approximately 46 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was purified by column chromatography and SDS-PAGE and subjected to amino acid sequence analysis via both the Edman technique and mass spectroscopy. The best match to the partial sequence obtained was the potential polypeptide product of open reading frame sso0417, whose DNA-derived amino acid sequence displayed many features reminiscent of the 2,3-diphosphoglycerate-independent phosphoglycerate (PGA) mutases [iPGMs]. Open reading frame sso0417 was therefore cloned, and its protein product was expressed in Escherichia coli. Assays of its catalytic capabilities revealed that the protein was a moderately effective PGA mutase that also exhibited low levels of phosphohydrolase activity. PGA mutase activity was dependent upon the presence of divalent metal ions such as Co(2+) or Mn(2+). The recombinant protein underwent autophosphorylation when incubated with either [gamma-(32)P]ATP or [gamma-(32)P]GTP. The site of phosphorylation was identified as Ser(59), which corresponds to the catalytically essential serine residue in bacterial and eucaryal iPGMs. The phosphoenzyme intermediate behaved in a chemically and kinetically competent manner. Incubation of the (32)P-labeled phosphoenzyme with 3-PGA resulted in the disappearance of radioactive phosphate and the concomitant appearance of (32)P-labeled PGA at rates comparable to those measured in steady-state assays of PGA mutase activity.  相似文献   

6.
Phosphoglycerate mutase (PGM), an important enzyme in the glycolytic pathway, catalyzes the transfer of a phosphate group between the 2 and the 3 positions of glyceric acid. The gene coding for the 2, 3-diphosphoglycerate independent monomeric PGM from Bacillus stearothermophilus (57 kDa), whose activity is extremely pH sensitive and has an absolute and specific requirement for Mn2+, has been cloned and the enzyme overexpressed and purified to homogeneity. Circular dichroism studies showed at most only small secondary structure changes in the enzyme upon binding to Mn2+ or its 3-phosphoglycerate substrate, but thermal unfolding analyses revealed that Mn2+ but not 3-phosphoglycerate caused a large increase in the enzyme's stability. Diffraction-quality crystals of the enzyme were obtained at neutral pH in the presence of 3-phosphoglyceric acid with ammonium sulfate as the precipitating agent; these crystals diffract X rays to beyond 2.5-A resolution and belong to the orthorhombic space group C2221 with unit cell dimensions, a = 58.42, b = 206.08, c = 124.87 A, and alpha = beta = gamma = 90.0 degrees. The selenomethionyl version of the B. stearothermophilus protein has also been overexpressed, purified, and crystallized. Employing these crystals, the determination of the three-dimensional structure of this PGM by the multiwavelength anomalous dispersion method is in progress.  相似文献   

7.
Yeast inorganic pyrophosphatase was found to bind two Mn2+ per subunit in the absence of phosphate and three Mn2+ per subunit in the presence of phosphate. Kinetic studies of the pyrophosphatase-catalyzed hydrolysis of Cr(NH3)4PP and Cr(H2O)4PP were carried out with Mn2+ and with Mg2+ as activators. The results from these studies suggest that three divalent cations per pyrophosphatase active site are required for catalysis. NMR and EPR studies were conducted to evaluate the relative location of the metal ion binding sites on the enzyme. The two Mn2+ ions bound to the free enzyme are in close enough proximity to magnetically interact. Analysis of the NMR and EPR data in terms of a dipolar relaxation mechanism between Mn2+ ions provides an estimate of the distance between them of 10-14 A. When the diamagnetic substrate analog [Co(NH3)4PNP]- or intermediate analog [Co(NH3)4 (P)2]- are bound to pyrophosphatase, two Mn2+ ions still bind to the enzyme and their magnetic interaction increases. In the presence of these Co3+ complexes, the Mn2+--Mn2+ separation decreases to 7-9 A. Several NMR and EPR experiments were conducted at low Mn2+ to pyrophosphatase ratios (approximately 0.3), where only one Mn2+ ion binds per subunit, in the presence of Cr3+ or Co3+ complexes of PNP or PP. Analysis of the Mn2+--Cr3+ dipolar relaxation evident in proton NMR and EPR data provided for the calculation of Mn2+--Cr3+ distances. When the substrate analog CrPNP was present, the Mn2+--Cr3+ distance was congruent to 7 A whereas, when Cr(P)2 was bound to pyrophosphatase, the Mn2+--Cr3+ distance was congruent to 5 A. These results strongly support a model for the catalytic site of pyrophosphatase that involves three metal ion cofactors.  相似文献   

8.
Horton NC  Perona JJ 《Biochemistry》2004,43(22):6841-6857
Four crystal structures of EcoRV endonuclease mutants K92A and K38A provide new insight into the mechanism of DNA bending and the structural basis for metal-dependent phosphodiester bond cleavage. The removal of a key active site positive charge in the uncleaved K92A-DNA-M(2+) substrate complex results in binding of a sodium ion in the position of the amine nitrogen, suggesting a key role for a positive charge at this position in stabilizing the sharp DNA bend prior to cleavage. By contrast, two structures of K38A cocrystallized with DNA and Mn(2+) ions in different lattice environments reveal cleaved product complexes featuring a common, novel conformation of the scissile phosphate group as compared to all previous EcoRV structures. In these structures, the released 5'-phosphate and 3'-OH groups remain in close juxtaposition with each other and with two Mn(2+) ions that bridge the conserved active site carboxylates. The scissile phosphates are found midway between their positions in the prereactive substrate and postreactive product complexes of the wild-type enzyme. Mn(2+) ions occupy two of the three sites previously described in the prereactive complexes and are plausibly positioned to generate the nucleophilic hydroxide ion, to compensate for the incipient additional negative charge in the transition state, and to ionize a second water for protonation of the 3'-oxyanion. Reconciliation of these findings with earlier X-ray and fluorescence studies suggests a novel mechanism in which a single initially bound metal ion in a third distinct site undergoes a shift in position together with movement of the scissile phosphate deeper into the active site cleft. This reconfigures the local environment to permit binding of the second metal ion followed by movement toward the pentacovalent transition state. The new mechanism suggested here embodies key features of previously proposed two- and three-metal catalytic models, and offers a view of the stereochemical pathway that integrates much of the copious structural and functional data that are available from exhaustive studies in many laboratories.  相似文献   

9.
During the catalytic cycle of beta1,4-galactosyltransferase-1 (Gal-T1), upon the binding of Mn(2+) followed by UDP-Gal, two flexible loops, a long and a short loop, change their conformation from open to closed. We have determined the crystal structures of a human M340H-Gal-T1 mutant in the open conformation (apo-enzyme), its Mn(2+) and Mn(2+)-UDP-Gal-bound complexes, and of a pentenary complex of bovine Gal-T1-Mn(2+)-UDP-GalNAc-Glc-alpha-lactalbumin. These studies show that during the conformational changes in Gal-T1, the coordination of Mn(2+) undergoes significant changes. It loses a coordination bond with a water molecule bound in the open conformation of Gal-T1 while forming a new coordination bond with another water molecule in the closed conformation, creating an active ground-state structure that facilitates enzyme catalysis. In the crystal structure of the pentenary complex, the N-acetylglucosamine (GlcNAc) moiety is found cleaved from UDP-GalNAc and is placed 2.7A away from the O4 oxygen atom of the acceptor Glc molecule, yet to form the product. The anomeric C1 atom of the cleaved GalNAc moiety has only two covalent bonds with its non-hydrogen atoms (O5 and C2 atoms), similar to either an oxocarbenium ion or N-acetylgalactal form, which are crystallographically indistinguishable at the present resolution. The structure also shows that the newly formed, metal-coordinating water molecule forms a hydrogen bond with the beta-phosphate group of the cleaved UDP moiety. This hydrogen bond formation results in the rotation of the beta-phosphate group of UDP away from the cleaved GalNAc moiety, thereby preventing the re-formation of the UDP-sugar during catalysis. Therefore, this water molecule plays an important role during catalysis in ensuring that the catalytic reaction proceeds in a forward direction.  相似文献   

10.
Protein phosphatase 2C (PP2C) is a Mn2+- or Mg2+-dependent protein Ser/Thr phosphatase that is essential for regulating cellular stress responses in eukaryotes. The crystal structure of human PP2C reveals a novel protein fold with a catalytic domain composed of a central beta-sandwich that binds two manganese ions, which is surrounded by alpha-helices. Mn2+-bound water molecules at the binuclear metal centre coordinate the phosphate group of the substrate and provide a nucleophile and general acid in the dephosphorylation reaction. Our model presents a framework for understanding not only the classical Mn2+/Mg2+-dependent protein phosphatases but also the sequence-related domains of mitochondrial pyruvate dehydrogenase phosphatase, the Bacillus subtilus phosphatase SpoIIE and a 300-residue domain within yeast adenyl cyclase. The protein architecture and deduced catalytic mechanism are strikingly similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity, suggestive of convergent evolution of protein Ser/Thr phosphatases.  相似文献   

11.
H-N-H is a motif found in the nuclease domain of a subfamily of bacteria toxins, including colicin E7, that are capable of cleaving DNA nonspecifically. This H-N-H motif has also been identified in a subfamily of homing endonucleases, which cleave DNA site specifically. To better understand the role of metal ions in the H-N-H motif during DNA hydrolysis, we crystallized the nuclease domain of colicin E7 (nuclease-ColE7) in complex with its inhibitor Im7 in two different crystal forms, and we resolved the structures of EDTA-treated, Zn(2+)-bound and Mn(2+)-bound complexes in the presence of phosphate ions at resolutions of 2.6 A to 2.0 A. This study offers the first determination of the structure of a metal-free and substrate-free enzyme in the H-N-H family. The H-N-H motif contains two antiparallel beta-strands linked to a C-terminal alpha-helix, with a divalent metal ion located in the center. Here we show that the metal-binding sites in the center of the H-N-H motif, for the EDTA-treated and Mg(2+)-soaked complex crystals, were occupied by water molecules, indicating that an alkaline earth metal ion does not reside in the same position as a transition metal ion in the H-N-H motif. However, a Zn(2+) or Mn(2+) ions were observed in the center of the H-N-H motif in cases of Zn(2+) or Mn(2+)-soaked crystals, as confirmed in anomalous difference maps. A phosphate ion was found to bridge between the divalent transition metal ion and His545. Based on these structures and structural comparisons with other nucleases, we suggest a functional role for the divalent transition metal ion in the H-N-H motif in stabilizing the phosphoanion in the transition state during hydrolysis.  相似文献   

12.
The three-dimensional X-ray crystal structures of HincII bound to cognate DNA containing GTCGAC and Mn(2+) or Mg(2+), at 2.50A and 2.95A resolution, respectively, are presented. In both structures, the DNA is found cleaved, and the positions of the active-site groups, cleaved phosphate group, and 3' oxygen atom of the leaving group are in very similar positions. Two highly occupied Mn(2+) positions are found in each active site of the four crystallographically independent subunit copies in the HincII/DNA/Mn(2+) structure. The manganese ion closest to the previously identified single Ca(2+) position of HincII is shifted 1.7A and has lost direct ligation to the active-site aspartate residue, Asp127. A Mn(2+)-ligated water molecule in a position analogous to that seen in the HincII/DNA/Ca(2+) structure, and proposed to be the attacking nucleophile, is beyond hydrogen bonding distance from the active-site lysine residue, Lys129, but remains within hydrogen bonding distance from the proRp oxygen atom of the phosphate group 3' to the scissile phosphate group. In addition, the position of the cleaved phosphate group is on the opposite side of the axis connecting the two metal ions relative to that found in the BamHI/product DNA/Mn(2+) structure. Mechanistic implications are discussed, and a model for the two-metal-ion mechanism of DNA cleavage by HincII is proposed.  相似文献   

13.
Adsorption of [(OH(2))(terpy)Mn(mu-O)(2)Mn(terpy)(OH(2))](3+) (terpy=2,2':6',2"-terpyridine) (1) onto montmorillonite K10 (MK10) yielded catalytic dioxygen (O(2)) evolution from water using a Ce(IV) oxidant. The Mn K-edge X-ray absorption near edge structure (XANES) of the 1/MK10 hybrid suggested that the oxidation state of the di-mu-oxo Mn(2) core could be Mn(III)-Mn(IV). However the pre-edge peak in the XANES spectrum of 1 adsorbed on MK10 is different from the neat 1 powder. The kinetic analysis of O(2) evolution showed that the catalysis requires cooperation of two equivalents of 1 adsorbed on MK10. The reaction of the [(bpy)(2)Mn(mu-O)(2)Mn(bpy)(2)](3+) (bpy=2,2'-bipyridine) (2)/MK10 hybrid with a Ce(IV) oxidant evolved O(2). However, the turnover number value was less than unity for 2/MK10, showing that 2 adsorbed on MK10 does not work as a catalyst. The terminal water ligands could be an important for the catalysis by adsorbed 1. The mechanism of O(2) production by photosynthetic oxygen evolving complex is discussed based on catalytic O(2) evolution by 1 adsorbed on MK10.  相似文献   

14.
15.
HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).  相似文献   

16.
Human beta1,3-glucuronyltransferase I (GlcAT-I) is a central enzyme in the initial steps of proteoglycan synthesis. GlcAT-I transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal beta 1-3Gal beta 1-4Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. We have now determined the crystal structure of GlcAT-1 at 2.3 A in the presence of the donor substrate product UDP, the catalytic Mn(2+) ion, and the acceptor substrate analog Gal beta 1-3Gal beta 1-4Xyl. The enzyme is a alpha/beta protein with two subdomains that constitute the donor and acceptor substrate binding site. The active site residues lie in a cleft extending across both subdomains in which the trisaccharide molecule is oriented perpendicular to the UDP. Residues Glu(227), Asp(252), and Glu(281) dictate the binding orientation of the terminal Gal-2 moiety. Residue Glu(281) is in position to function as a catalytic base by deprotonating the incoming 3-hydroxyl group of the acceptor. The conserved DXD motif (Asp(194), Asp(195), Asp(196)) has direct interaction with the ribose of the UDP molecule as well as with the Mn(2+) ion. The key residues involved in substrate binding and catalysis are conserved in the glucuronyltransferase family as well as other glycosyltransferases.  相似文献   

17.
The Bacillus subtilis genes tpi, pgm, and eno, encoding triose phosphate isomerase, phosphoglycerate mutase (PGM), and enolase, respectively, have been cloned and sequenced. These genes are the last three in a large putative operon coding for glycolytic enzymes; the operon includes pgk (coding for phosphoglycerate kinase) followed by tpi, pgm, and eno. The triose phosphate isomerase and enolase from B. subtilis are extremely similar to those from all other species, both eukaryotic and prokaryotic. However, B. subtilis PGM bears no resemblance to mammalian, fungal, or gram-negative bacterial PGMs, which are dependent on 2,3-diphosphoglycerate (DPG) for activity. Instead, B. subtilis PGM, which is DPG independent, is very similar to a DPG-independent PGM from a plant species but differs from the latter in the absolute requirement of B. subtilis PGM for Mn2+. The cloned pgm gene has been used to direct up to 25-fold overexpression of PGM in Escherichia coli; this should facilitate purification of large amounts of this novel Mn(2+)-dependent enzyme. Inactivation of pgm plus eno in B. subtilis resulted in extremely slow growth either on plates or in liquid, but growth of these mutants was enhanced by supplementation of media with malate. However, these mutants were asporogenous with or without malate supplementation.  相似文献   

18.
Lactococcus lactis beta-phosphoglucomutase (beta-PGM) catalyzes the interconversion of beta-d-glucose 1-phosphate (beta-G1P) and beta-d-glucose 6-phosphate (G6P), forming beta-d-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. Beta-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine beta-PGM activation by the Mg(2+) cofactor, beta-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 A resolution X-ray crystal structure of the Mg(2+)-beta-PGM complex is examined in the context of previously reported structures of the Mg(2+)-alpha-d-galactose-1-phosphate-beta-PGM, Mg(2+)-phospho-beta-PGM, and Mg(2+)-beta-glucose-6-phosphate-1-phosphorane-beta-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity. Comparison of the ligands to Mg(2+) in the different complexes shows that a single Mg(2+) coordination site must alternatively accommodate water, phosphate, and the phosphorane intermediate during catalytic turnover. Limited involvement of the HAD family metal-binding loop in Mg(2+) anchoring in beta-PGM is consistent with the relatively loose binding indicated by the large K(m) for Mg(2+) activation (270 +/- 20 microM) and with the retention of activity found in the E169A/D170A double loop mutant. Comparison of the relative positions of cap and core domains in the different complexes indicated that interaction of cap domain Arg49 with the "nontransferring" phosphoryl group of the substrate ligand might stabilize the cap-closed conformation, as required for active site desolvation and alignment of Asp10 for acid-base catalysis. Kinetic analyses of the specificity of beta-PGM toward phosphoryl group donors and the specificity of phospho-beta-PGM toward phosphoryl group acceptors were carried out. The results support a substrate induced-fit mechanism of beta-PGM catalysis, which allows phosphomutase activity to dominate over the intrinsic phosphatase activity. Last, we present evidence that the autophosphorylation of beta-PGM by the substrate beta-G1P accounts for the origin of phospho-beta-PGM in the cell.  相似文献   

19.
Spores of Bacillus subtilis strains with (wild type) or without (α(-)β(-)) most DNA-binding α/β-type small, acid-soluble proteins (SASP) were prepared in medium with additional MnCl(2) concentrations of 0.3 μM to 1 mM. These haploid spores had Mn levels that varied up to 180-fold and Mn/Fe ratios that varied up to 300-fold. However, the resistance of these spores to desiccation, wet heat, dry heat, and in particular ionizing radiation was unaffected by their level of Mn or their Mn/Fe ratio; this was also the case for wild-type spore resistance to hydrogen peroxide (H(2)O(2)). However, α(-)β(-) spores were more sensitive to H(2)O(2) when they had high Mn levels and a high Mn/Fe ratio. These results suggest that Mn levels alone are not essential for wild-type bacterial spores' extreme resistance properties, in particular ionizing radiation, although high Mn levels sensitize α(-)β(-) spores to H(2)O(2), probably by repressing expression of the auxiliary DNA-protective protein MrgA. Notably, Mn(2+) complexed with the abundant spore molecule dipicolinic acid (DPA) with or without inorganic phosphate was very effective at protecting a restriction enzyme against ionizing radiation in vitro, and Ca(2+) complexed with DPA and phosphate was also very effective in this regard. These latter data suggest that protein protection in spores against treatments such as ionizing radiation that generate reactive oxygen species may be due in part to the spores' high levels of DPA conjugated to divalent metal ions, predominantly Ca(2+), much like high levels of Mn(2+) complexed with small molecules protect the bacterium Deinococcus radiodurans against ionizing radiation.  相似文献   

20.
beta-Glucosyltransferase (BGT) is a DNA-modifying enzyme encoded by bacteriophage T4 that transfers glucose from uridine diphosphoglucose to 5-hydroxymethyl cytosine bases of phage T4 DNA. We report six X-ray structures of the substrate-free and the UDP-bound enzyme. Four also contain metal ions which activate the enzyme, including Mg(2+) in forms 1 and 2 and Mn(2+) or Ca(2+). The substrate-free BGT structure differs by a domain movement from one previously determined in another space group. Further domain movements are seen in the complex with UDP and the four UDP-metal complexes. Mg(2+), Mn(2+) and Ca(2+) bind near the beta-phosphate of the nucleotide, but they occupy slightly different positions and have different ligands depending on the metal and the crystal form. Whilst the metal site observed in these complexes with the product UDP is not compatible with a role in activating glucose transfer, it approximates the position of the positive charge in the oxocarbonium ion thought to form on the glucose moiety of the substrate during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号