首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We expressed cDNAs coding for manganese peroxidases (MnPs) from the basidiomycetes Ceriporiopsis subvermispora (MnP1) and Phanerochaete chrysosporium (H4) under control of the α-amylase promoter from Aspergillus oryzae in Aspergillus nidulans. The recombinant proteins (rMnP1 and rH4) were expressed at similar levels and had molecular masses, both before and after deglycosylation, that were the same as those described for the MnPs isolated from the corresponding parental strains. Isoelectric focusing (IEF) analysis of rH4 revealed several isoforms with pIs between 4.83 and 4.06, and one of these pIs coincided with the pI described for H4 isolated from P. chrysosporium (pI 4.6). IEF of rMnP1 resolved four isoenzymes with pIs between 3.45 and 3.15, and the pattern closely resembled the pattern observed with MnPs isolated from C. subvermispora grown in solid-state cultures. We compared the abilities of recombinant MnPs to use various substrates and found that rH4 could oxidize o-dianisidine and p-anisidine without externally added manganese, a property not previously reported for this MnP isoenzyme from P. chrysosporium.  相似文献   

2.
A gene encoding manganese peroxidase (mnp1) from Phanerochaete chrysosporium was cloned downstream of a constitutive glyceraldehyde-3-phosphate dehydrogenase promoter in the methylotrophic yeast Pichia pastoris. Three different expression vectors were constructed: pZBMNP contains the native P. chrysosporium fungal secretion signal, palphaAMNP contains an alpha-factor secretion signal derived from Saccharomyces cerevisiae, and pZBIMNP has no secretion signal and was used for intracellular expression. Both the native fungal secretion signal sequence and alpha-factor secretion signal sequence directed the secretion of active recombinant manganese peroxidase (rMnP) from P. pastoris transformants. The majority of the rMnP produced by P. pastoris exhibited a molecular mass (55-100 kDa) considerably larger than that of the wild-type manganese peroxidase (wtMnP, 46 kDa). Deletion of the native fungal secretion signal yielded a molecular mass of 39 kDa for intracellular rMnP in P. pastoris. Treatment of the secreted rMnP with endoglycosidase H (Endo H) resulted in a considerable decrease in the mass of rMnP, indicating N-linked hyperglycosylation. Partially purified rMnP showed kinetic characteristics similar to those of wtMnP. Both enzymes also had similar pH stability profiles. Addition of exogenous Mn(II), Ca(II), and Fe(III) conferred additional thermal stability to both enzymes. However, rMnP was slightly less thermostable than wtMnP, which demonstrated an extended half-life at 55 degrees C.  相似文献   

3.
A manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium was efficiently expressed in Aspergillus oryzae. Expression was achieved by fusing the mature cDNA of mnp1 with the A. oryzae Taka amylase promoter and secretion signal. The 3' untranslated region of the glucoamylase gene of Aspergillus awamori provided the terminator. The recombinant protein (rMnP) was secreted in an active form, permitting rapid detection and purification. Physical and kinetic properties of rMnP were similar to those of the native protein. The A. oryzae expression system is well suited for both mechanistic and site-directed mutagenesis studies.  相似文献   

4.
Four isozymes of manganese peroxidase (MnP) were identified in the culture fluid of the hyperlignolytic fungus IZU-154 under nitrogen starvation conditions. One of them was purified and characterized kinetically. The specific activity and Kcat/K(m) value of the MnP from IZU-154 were 1.6 times higher than those of the MnP from a typical lignin-degrading fungus, Phanerochaete chrysosporium. Two cDNAs encoding MnP isozymes from IZU-154 were isolated. The coding sequence of the two cDNAs, IZ-MnP1 cDNA and IZ-MnP2 cDNA, were 1,152 (384 amino acids) and 1,155 (385 amino acids) bp in length, respectively. They exhibit 96.2% identity at the nucleotide level and 95.1% identity at the amino acid level. Southern blot analysis indicated that two MnP isozyme genes exist in IZU-154 genomic DNA. The primary structures of two MnPs from IZU-154 were similar to those of MnPs from P. chrysosporium. The amino acid sequences including the important residues identified in MnPs from P. chrysosporium, such as the manganese-binding residues, the calcium-binding residues, the disulfide bonds, and the N-glycosylation site, were conserved in the two deduced IZ-MnPs. However, several discrepancies were found in the context around the distal histidine residue between MnP from IZU-154 and MnP from P. chrysosporium, which likely led to the difference in the kinetic parameters for MnP function.  相似文献   

5.
Site-directed mutations R177A and R177K in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium were generated. The mutant enzymes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase gene promoter, purified to homogeneity, and characterized by spectroscopic and kinetic methods. The UV-vis spectra of the ferric and oxidized states and resonance Raman spectra of the ferric state were similar to those of the wild-type enzyme, indicating that the heme environment was not significantly affected by the mutations at Arg177. Apparent K(m) values for Mn(II) were approximately 20-fold greater for the R177A and R177K MnPs than for wild-type MnP. However, the apparent K(m) values for the substrates, H(2)O(2) and ferrocyanide, and the k(cat) values for Mn(II) and ferrocyanide oxidation were similar to those of the wild-type enzyme. The second-order rate constants for compound I (MnPI) reduction of the mutant MnPs by Mn(II) were approximately 10-fold lower than for wild-type MnP. In addition, the K(D) values calculated from the first-order plots of MnP compound II (MnPII) reduction by Mn(II) for the mutant enzymes were approximately 22-fold greater than for wild-type MnP. In contrast, the first-order rate constants for MnPII reduction by Mn(II) were similar for the mutant and wild-type MnPs. Furthermore, second-order rate constants for the wild-type and mutant enzymes for MnPI formation, for MnPI reduction by bromide, and for MnPI and MnPII reduction by ferrocyanide were not significantly changed. These results indicate that both the R177A and R177K mutations specifically affect the binding of Mn, whereas the rate of electron transfer from Mn(II) to the oxidized heme apparently is not affected.  相似文献   

6.
Dichomitus squalens belongs to a group of white-rot fungi which express manganese peroxidase (MnP) and laccase but do not express lignin peroxidase (LiP). To facilitate structure/function studies of MnP from D. squalens, we heterologously expressed the enzyme in the well-studied basidiomycete, Phanerochaete chrysosporium. The glyceraldehyde-3-phosphate-dehydrogenase (gpd) promoter of P. chrysosporium was fused to the coding region of the mnp2 gene of D. squalens, 5 bp upstream of the translation start site, and placed in a vector containing the ural gene as a selectable marker. Purified recombinant protein (rDsMnP) was similar in kinetic and spectral characteristics to both the wild-type MnPs from D. squalens and P. chrysosporium (PcMnP). The N-terminal amino acid sequence of the rDsMnP was determined and was identical to the predicted sequence. Cleavage of the propeptide followed a conserved amino acid motif (A-A-P-S/T) in both rDsMnP and PcMnP. However, the protein from D. squalens was considerably more thermostable than its P. chrysosporium homolog with half-lives 15- to 40-fold longer at 55 degrees C. As previously demonstrated for PcMnP, addition of exogenous MnII and CdII conferred additional thermal stability to rDsMnP. However, unlike PcMnP, ZnII also confers some additional thermal stability to rDsMnP at 55 degrees C. Some differences in the metal-specific effects on thermal stability of rDsMnP at 65 degrees C were noted.  相似文献   

7.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

8.
A strain of Aspergillus niger, previously isolated from sugarcane bagasse because of its capacity to degrade phenanthrene in soil by solid culture, was used to express a manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium, aiming at increasing its polycyclic aromatic hydrocarbons degradation capacity. Transformants were selected based on their resistance to hygromycin B and the discoloration induced on Poly R-478 dye by the peroxidase activity. The recombinant A. niger SBC2-T3 strain developed MnP activity and was able to remove 95% of the initial phenanthrene (400 ppm) from a microcosm soil system after 17 days, whereas the wild strain removed 72% under the same conditions. Transformation success was confirmed by PCR amplification using gene-specific primers, and a single fragment (1,348 bp long, as expected) of the recombinant mnp1 was amplified in the DNA from transformants, which was absent from the parental strain.  相似文献   

9.
T. Vares  M. Kalsi    A. Hatakka 《Applied microbiology》1995,61(10):3515-3520
The white rot fungus Phlebia radiata 79 (ATCC 64658) produces lignin peroxidase (LiP), manganese peroxidase (MnP), glyoxal oxidase (GLOX), and laccase in the commonly used glucose low-nitrogen liquid medium. However, the enzymes which this fungus utilizes for selective removal of lignin during degradation of different lignocellulosic substrates have not been studied before. Multiple forms of LiP, MnP, GLOX, and laccase were purified from P. radiata culture extracts obtained after solid-state fermentation of wheat straw. However, the patterns of extracellular lignin-modifying enzymes studied were different from those of the enzymes usually found in liquid cultures of P. radiata. Three LiP isoforms were purified. The major LiP isoform from solid-state cultivation was LiP2. LiP3, which has usually been described as the major isoenzyme in liquid cultures, was not expressed during straw fermentation. New MnP isoforms have been detected in addition to the previously reported MnPs. GLOX was secreted in rather high amounts simultaneously with LiP during the first 2 weeks of growth. GLOX purified from P. radiata showed multiple forms, with pIs ranging from 4.0 to 4.6 and with a molecular mass of ca. 68 kDa.  相似文献   

10.
We studied the effect of manganese and various organic chelators on the distribution, depolymerization, and mineralization of synthetic 14C-labeled lignins (DHP) in cultures of Phanerochaete chrysosporium. In the presence of high levels of manganese [Mn(II) or Mn(III)], along with a suitable chelator, lignin peroxidase (LiP) production was repressed and manganese peroxidase (MnP) production was stimulated. Even though partial lignin depolymerization was observed under these conditions, further depolymerization of the polymer to smaller compounds was more efficient when low levels of manganese were present. LiPs were prevalent under these latter conditions, but MnPs were also present. Mineralization was more efficient with low manganese. These studies indicate that MnP performs the initial steps of DHP depolymerization but that LiP is necessary for further degradation of the polymer to lower-molecular-weight products and mineralization. We also conclude that a soluble Mn(II)-Mn(III) organic acid complex is necessary to repress LiP.  相似文献   

11.
Studies on the production of fungal peroxidases in Aspergillus niger   总被引:3,自引:0,他引:3  
To get insight into the limiting factors existing for the efficient production of fungal peroxidase in filamentous fungi, the expression of the Phanerochaete chrysosporium lignin peroxidase H8 (lipA) and manganese peroxidase (MnP) H4 (mnp1) genes in Aspergillus niger has been studied. For this purpose, a protease-deficient A. niger strain and different expression cassettes have been used. Northern blotting experiments indicated high steady-state mRNA levels for the recombinant genes. Manganese peroxidase was secreted into the culture medium as an active protein. The recombinant protein showed specific activity and a spectrum profile similar to those of the native enzyme, was correctly processed at its N terminus, and had a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Recombinant MnP production could be increased up to 100 mg/liter upon hemoglobin supplementation of the culture medium. Lignin peroxidase was also secreted into the extracellular medium, although the protein was not active, presumably due to incorrect processing of the secreted enzyme. Expression of the lipA and mnp1 genes fused to the A. niger glucoamylase gene did not result in improved production yields.  相似文献   

12.
We studied the effect of manganese and various organic chelators on the distribution, depolymerization, and mineralization of synthetic 14C-labeled lignins (DHP) in cultures of Phanerochaete chrysosporium. In the presence of high levels of manganese [Mn(II) or Mn(III)], along with a suitable chelator, lignin peroxidase (LiP) production was repressed and manganese peroxidase (MnP) production was stimulated. Even though partial lignin depolymerization was observed under these conditions, further depolymerization of the polymer to smaller compounds was more efficient when low levels of manganese were present. LiPs were prevalent under these latter conditions, but MnPs were also present. Mineralization was more efficient with low manganese. These studies indicate that MnP performs the initial steps of DHP depolymerization but that LiP is necessary for further degradation of the polymer to lower-molecular-weight products and mineralization. We also conclude that a soluble Mn(II)-Mn(III) organic acid complex is necessary to repress LiP.  相似文献   

13.
M B Mayfield  K Kishi  M Alic    M H Gold 《Applied microbiology》1994,60(12):4303-4309
The promoter region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was used to drive expression of mnp1, the gene encoding Mn peroxidase isozyme 1, in primary metabolic cultures of Phanerochaete chrysosporium. A 1,100-bp fragment of the P. chrysosporium gpd promoter region was fused upstream of the mnp1 gene to construct plasmid pAGM1, which contained the Schizophyllum commune ade5 gene as a selectable marker. pAGM1 was used to transform a P. chrysosporium ade1 auxotroph to prototrophy. Ade+ transformants were screened for peroxidase activity on a solid medium containing high carbon and high nitrogen (2% glucose and 24 mM NH4 tartrate) and o-anisidine as the peroxidase substrate. Several transformants that expressed high peroxidase activities were purified and analyzed further in liquid cultures. Recombinant Mn peroxidase (rMnP) was expressed and secreted by transformant cultures on day 2 under primary metabolic growth conditions (high carbon and high nitrogen), whereas endogenous wild-type mnp genes were not expressed under these conditions. Expression of rMnP was not influenced by the level of Mn in the culture medium, as previously observed for the wild-type Mn peroxidase (wtMnP). The amount of active rMnP expressed and secreted in this system was comparable to the amount of enzyme expressed by the wild-type strain under ligninolytic conditions. rMnP was purified to homogeneity by using DEAE-Sepharose chromatography, Blue Agarose chromatography, and Mono Q column chromatography. The M(r) and absorption spectrum of rMnP were essentially identical to the M(r) and absorption spectrum of wtMnP, indicating that heme insertion, folding, and secretion were normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
4-Chlorophenol (4-CP) degradation was investigated by suspended and immobilized Phanerochaete chrysosporium conducted in static and agitated cultures. The best results were achieved when experiment was carried out in a rotating biological contactor instead of an Erlenmeyer flask, for both batch degradation and repeated batch degradation. The relative contribution of lignin peroxidase (LiP) versus manganese peroxidase (MnP) to the 4-CP degradation by P. chrysosporium was investigated. 4-CP degradation slightly increased and a high level of MnP (38 nKat ml(-1)) was produced when P. chrysosporium was grown at high Mnll concentration. High LiP production in the medium had no significant effect on 4-CP degradation. 4-CP degradation occurred when P. chrysosporium was grown in a medium that repressed LiP and MnP production. This result indicates that LiP and MnP are not directly involved in 4-CP degradation by P. chrysosporium.  相似文献   

15.
16.
A method for the production and concentration of the lignin-degrading enzyme, manganese peroxidase (rMnP), was developed using the yeast Pichia pastoris in high cell density, fed-batch cultivations. A gene encoding manganese peroxidase (mnp1) from the white-rot fungus Phanerochaete chrysosporium was cloned into a protease deficient (pep4-) strain of the methylotrophic yeast P. pastoris. Heme is an important cofactor for active rMnP production, and amendment of yeast cultures with heme increased active rMnP concentrations. In both shake-flasks and fed-batch bioreactors, the relationship between heme concentration and rMnP activity was logarithmic, with increasing heme concentrations resulting in progressively lesser increases in enzyme activity. Scale-up from shake-flasks to 2 L fed-batch cultivations increased rMnP activities from 200 U/L to 2,500 U/L, with addition of 0.1 g/L heme (added heme per liquid volume) at the beginning of the fed-batch phase resulting in higher enzyme activities than addition at the beginning of the batch phase. A combination of centrifugation, acetone precipitation, dialysis, and freeze drying was found to be effective for concentrating the rMnP from 2,500 U/L in the P. pastoris bioreactor culture to 30,000 U/L in 0.1 M potassium phosphate buffer pH 6. The rMnP recovery yield was 60% and the purity was 1-4%. By using 0.1 g/L heme during the fed-batch cultivation, the heme content of the final enzyme preparation could be reduced by 97%, and had sufficiently high rMnP activity and low enough color to be suitable for pulp bleaching experiments.  相似文献   

17.
18.
19.
The specific enzymes associated with lignin degradation in solid lignocellulosic substrates have not been identified. Therefore, we examined extracts of cultures of Phanerochaete chrysosporium that were degrading a mechanical pulp of aspen wood. Western blot (immunoblot) analyses of the partially purified protein revealed lignin peroxidase, manganese-dependent peroxidase (MnP), and glyoxal oxidase. The dominant peroxidase, an isoenzyme of MnP (pI 4.9), was isolated, and its N-terminal amino acid sequence and amino acid composition were determined. The results reveal both similarities to and differences from the deduced amino acid sequences from cDNA clones of dominant MnP isoenzymes from liquid cultures. Our results suggest, therefore, that the ligninolytic-enzyme-encoding genes that are expressed during solid substrate degradation differ from those expressed in liquid culture or are allelic variants of their liquid culture counterparts. In addition to lignin peroxidase, MnP, and glyoxal oxidase, xylanase and protease activities were present in the extracts of the degrading pulp.  相似文献   

20.
Two types of glycosylated peroxidases are secreted by the white-rot fungus Phanerochaete chrysosporium, lignin peroxidase (LiP) and manganese peroxidase (MnP). The thermal stabilities of recombinant LiPH2, LiPH8, and MnPH4, which were expressed without glycosylation in Escherichia coli, were lower than those of corresponding native peroxidases isolated from P. chrysosporium. Recovery of thermally inactivated recombinant enzyme activities was higher than with that of the thermally inactivated native peroxidases. Removal of N-linked glycans from native LiPH8 and MnPH4 did not affect enzyme activities or thermal stabilities of the enzymes. Although LiPH2, LiPH8, and MnPH4 contained O-linked glycans, only the O-linked glycans from MnPH4 could be removed by O-glycosidase, and the glycan-depleted MnPH4 exhibited essentially the same activity as nondeglycosylated MnPH4, but thermal stability decreased. Periodate-treated MnPH4 exhibited even lower thermal stability than O-glycosidase treated MnPH4. The role of O-linked glycans in protein stability was also evidenced with LiPH2 and LiPH8. Based on these data, we propose that neither N- nor O-linked glycans are likely to have a direct role in enzyme activity of native LiPH2, LiPH8, and MnPH4 and that only O-linked glycans may play a crucial role in protein stability of native peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号