首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distinct molecular mechanisms underlying immunodeficiency caused by three different naturally occurring point mutations within the collagen-like domain of human mannose-binding protein (MBP; also known as mannose-binding lectin) have been revealed by introduction of analogous mutations into rat serum MBP. The change Arg23-->Cys results in a lower proportion of the large oligomers most efficient at activating the complement cascade. The presence of cysteine at position 23, which forms aberrant interchain disulfide bonds, causes disruption of the normal oligomeric state. The deficiency in MBPs containing Gly25-->Asp and Gly28-->Glu substitutions also results in part from reduced formation of higher oligomers. However, decreased ability to interact with downstream components of the complement cascade due to changes in both the N-terminal disulfide-bonding arrangement and the local structure of the collagenous domain make more important contributions to the loss of activity in these mutants.  相似文献   

2.
Mutations in the collagen-like domain of serum mannose-binding protein (MBP) interfere with the ability of the protein to initiate complement fixation through the MBP-associated serine proteases (MASPs). The resulting deficiency in the innate immune response leads to susceptibility to infections. Studies have been undertaken to define the region of MBP that interacts with MASPs and to determine how the naturally occurring mutations affect this interaction. Truncated and modified MBPs and synthetic peptides that represent segments of the collagen-like domain of MBP have been used to demonstrate that MASPs bind on the C-terminal side of the hinge region formed by an interruption in the Gly-X-Y repeat pattern of the collagen-like domain. The binding sites for MASP-2 and for MASP-1 and -3 overlap but are not identical. The two most common naturally occurring mutations in MBP result in substitution of acidic amino acids for glycine residues in Gly-X-Y triplets on the N-terminal side of the hinge. Circular dichroism analysis and differential scanning calorimetry demonstrate that the triple helical structure of the collagen-like domain is largely intact in the mutant proteins, but it is more easily unfolded than in wild-type MBP. Thus, the effect of the mutations is to destabilize the collagen-like domain, indirectly disrupting the binding sites for MASPs. In addition, at least one of the mutations has a further effect on the ability of MBP to activate MASPs.  相似文献   

3.
Individuals heterozygous for mutant alleles encoding serum mannose-binding protein (MBP, also known as mannose-binding lectin) show increased susceptibility to infections caused by a wide range of pathogenic microorganisms. To investigate the molecular defects associated with heterozygosity, wild-type rat serum MBP polypeptides (MBP-A: 56% identical in sequence to human MBP) and rat MBP polypeptides containing mutations associated with human immunodeficiency have been coexpressed using a well-characterized mammalian expression system. The resulting proteins are secreted almost exclusively as heterooligomers that are defective in activating the complement cascade. Functional defects are caused by structural changes to the N-terminal collagenous and cysteine-rich domains of MBP, disrupting interactions with associated serine proteases. The dominant effects of the mutations demonstrate how the presence of a single mutant allele gives rise to the molecular defects that lead to the disease phenotype in heterozygous individuals.  相似文献   

4.
Human mannan-binding protein (MBP) is a serum lectin involved in innate immunity. MBP activates the complement pathway through its interaction with mannose-rich carbohydrates on various microorganisms and a common opsonic defect has been shown to be associated with a low serum concentration of MBP. This low serum concentration is closely associated with a single base mutation in codon 52, 54 or 57 of the human MBP gene, which results in a change of Arg52 to Cys, Gly54 to Asp, or Gly57 to Gln, respectively, in the collagen-like region of the molecule and prevents the formation of higher oligomers. However, the mechanism underlying the low serum concentration in such patients is completely unknown. The levels of protein synthesis and secretion of the normal and mutant MBPs seem to be similar according to our previous in vitro results. In this study, we examined the plasma clearance of the normal and mutant human (Gly54Asp) MBPs in mice, and found that the half-life of the mutant MBP is about half that of the normal MBP, explaining in part the difference in the plasma levels between the two types of MBP.  相似文献   

5.
Mannan-binding lectin (MBL) initiates complement activation by binding to arrays of carbohydrates on the surfaces of pathogenic microorganisms and activating MBL-associated serine proteases (MASPs). Separate point mutations to the collagenous domain of human MBL are associated with immunodeficiency, caused by reduced complement activation by the variant MBLs as well as by lower serum MBL concentrations. In the work reported here, we have used the well characterized rat lectin pathway to analyze the molecular and functional defects associated with two of the variant proteins. Mutations Gly25 --> Asp and Gly28 --> Glu create comparable structural changes in rat MBL but the G28E variant activates complement >10-fold less efficiently than the G25D variant, which in turn has approximately 7-fold lower activity than wild-type MBL. Analysis of mutant MBL . MASP-2 complexes assembled from recombinant components shows that reduced complement activation by both mutant MBLs is caused by failure to activate MASP-2 efficiently on binding to a mannan-coated surface. Disruption of MBL-MASP-2 interactions as well as to changes in oligomeric structure and reduced binding to carbohydrate ligands compared with wild-type MBL probably account for the intermediate phenotype of the G25D variant. However, carbohydrate binding and MASP-2 activation are ostensibly completely decoupled in complexes assembled from the G28E mutant, such that the rate of MASP-2 activation is no greater than the basal rate of zymogen MASP-2 autoactivation. Analogous molecular defects in human MBL probably combine to create the mutant phenotypes of immunodeficient individuals.  相似文献   

6.
Mannose-binding lectin (MBL) plays a critical role in innate immunity. Point mutations in the collagen-like domain (R32C, G34D, or G37E) of MBL cause a serum deficiency, predisposing patients to infections and diseases such as rheumatoid arthritis. We examined whether MBL mutants show enhanced susceptibility to proteolysis by matrix metalloproteinases (MMPs), which are important mediators in inflammatory tissue destruction. Human and rat MBL were resistant to proteolysis in the native state but were cleaved selectively within the collagen-like domain by multiple MMPs after heat denaturation. In contrast, rat MBL with mutations homologous to those of the human variants (R23C, G25D, or G28E) was cleaved efficiently without denaturation in the collagen-like domain by MMP-2 and MMP-9 (gelatinases A and B) and MMP-14 (membrane type-1 MMP), as well as by MMP-1 (collagenase-1), MMP-8 (neutrophil collagenase), MMP-3 (stromelysin-1), neutrophil elastase, and bacterial collagenase. Sites and order of cleavage of the rat MBL mutants for MMP-2 and MMP-9 were: Gly(45)-Lys(46) --> Gly(51)-Ser(52) --> Gly(63)-Gln(64) --> Asn(80)-Met(81) which differed from that of MMP-14, Gly(39)-Leu(40) --> Asn(80)-Met(81), revealing that the MMPs were not functionally interchangeable. These sites were homologous to those cleaved in denatured human MBL. Hence, perturbation of the collagen-like structure of MBL by natural mutations or by denaturation renders MBL susceptible to MMP cleavage. MMPs are likely to contribute to MBL deficiency in individuals with variant alleles and may also be involved in clearance of MBL and modulation of the host response in normal individuals.  相似文献   

7.
The N-terminal sequence of the major human serum mannose-binding protein (MBP1) was shown to be identical at all positions determined with the amino acid sequence predicted from a cDNA clone of a human liver MBP mRNA. An oligonucleotide corresponding to part of the sequence of this cDNA clone was used to isolate a cosmid genomic clone containing a homologous gene. The intron/exon structure of this gene was found to closely resemble that of the gene encoding a rat liver MBP (MBP A). The nucleotide sequence of the exons differed in several places from that of the human cDNA clone published by Ezekowitz, Day & Herman [(1988) J. Exp. Med. 167, 1034-1046]. The MBP molecule comprises a signal peptide, a cysteine-rich domain, a collagen-like domain, a 'neck' region and a carbohydrate-binding domain. Each domain is encoded by a separate exon. This genomic organization lends support to the hypothesis that the gene arose during evolution by a process of exon shuffling. Several consensus sequences that may be involved in controlling the expression of human serum MBP have been identified in the promoter region of the gene. The consensus sequences are consistent with the suggestion that this mammalian serum lectin is regulated as an acute-phase protein synthesized by the liver.  相似文献   

8.
Mannose-binding protein (MBP; mannose-binding lectin) forms part of the innate immune system. By binding directly to carbohydrates on the surfaces of potential microbial pathogens, MBP and MBP-associated serine proteases (MASPs) can replace antibodies and complement components C1q, C1r, and C1s of the classical complement pathway. In order to investigate the mechanisms of MASP activation by MBP, the cDNAs of rat MASP-1 and -2 have been isolated, and portions encompassing the N-terminal CUB and epidermal growth factor-like domains have been expressed and purified. Biophysical characterization of the purified proteins indicates that each truncated MASP is a Ca(2+)-independent homodimer in solution, in which the interacting modules include the N-terminal two domains. Binding studies reveal that both MASPs associate independently with rat MBP in a Ca(2+)-dependent manner through interactions involving the N-terminal three domains. The biophysical properties of the truncated MASPs indicate that the interactions with MBP leading to complement activation differ significantly from those between components C1q, C1r, and C1s of the classical pathway. Analysis of MASP binding by rat MBP containing naturally occurring mutations equivalent to those associated with human immunodeficiency indicates that binding to both truncated MASP-1 and MASP-2 proteins is defective in such mutants.  相似文献   

9.
Both ficolins and mannose-binding lectin (MBL) are lectins characterized by the presence of collagen-like and carbohydrate-binding domains in a subunit, although their carbohydrate-binding moieties are quite different. A fibrinogen-like domain is in ficolins, and a carbohydrate recognition domain is in MBL. On binding to pathogens, human MBL activates the complement system via the lectin pathway in association with two types of MBL-associated serine proteases (MASP), MASP-1 and MASP-2 and its truncated form, small MBL-associated protein (sMAP, also called MAp19). We report here that ficolin/P35, a human serum ficolin, was found to copurify with MASPs and sMAP. MASPs that were complexed with ficolin/P35 exhibited proteolytic activities against complement components C4, C2, and C3. The ficolin/P35-MASPs-sMAP complex that was bound to Salmonella typhimurium activated complement. These findings indicate that ficolin/P35 is a second collagenous lectin capable of activating the lectin pathway and thus plays a role in innate immunity.  相似文献   

10.
cDNA clones encoding rat liver mannan-binding protein (MBP), a lectin specific for mannose and N-acetylglucosamine, were isolated from a rat liver cDNA library carried in lambda gt 11, by screening with affinity purified polyclonal rabbit anti-rat liver MBP antibodies. The nucleotide sequence of the cDNA determined by the dideoxy method revealed the complete amino acid sequence of the MBP (226 residues). The NH2-terminal residue of the MBP, glutamic acid, was preceded by a predominantly hydrophobic stretch of 18 amino acids, which was assumed to be a signal peptide. Near the NH2-terminal, there was a collagen-like domain, which consisted of 19 repeats of the sequence Gly-X-Y. Here, X and Y were frequently proline and lysine. Three proline and lysine residues were hydroxylated, and one of the latter appeared to link to galactose. Computer analysis of several lectins for sequence homology suggested that the COOH-terminal quarter of the MBP is associated with the calcium binding as well as carbohydrate recognition.  相似文献   

11.
The long pentraxin 3 (PTX3), serum amyloid P component (SAP), and C-reactive protein belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain but not C-reactive protein. MBL-PTX3 complex formation resulted in recruitment of C1q, but this was not seen for the MBL-SAP complex. However, both MBL-PTX3 and MBL-SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 led to communication between the lectin and classical complement pathways via recruitment of C1q, whereas SAP-enhanced complement activation occurs via a hitherto unknown mechanism. Taken together, MBL-pentraxin heterocomplexes trigger cross-activation of the complement system.  相似文献   

12.
Sugar-binding characteristics of rat serum mannose-binding protein (MBP) were studied using the carbohydrate-recognition domain of this protein expressed from a cloned cDNA. To assess the binding affinity of various test compounds, they were added as inhibitors in a binding assay in which 125I-MBP was incubated with yeast cells and the extent of binding was estimated from the radioactivity associated with the pelleted cells. The results of such inhibition assays suggest that MBP has a small binding site which is probably of the trough-type. The 3- and 4-OH of the target sugar are indispensable, while the 6-OH is not required. These characteristics are shared by the rat hepatic lectin and chicken hepatic lectin, both of which are C-type lectins containing carbohydrate-recognition domains highly homologous to that of MBP. Apparently, the related primary structures of these lectins give rise to similar gross architecture of their binding sites, despite the fact that each exhibits different sugar binding specificities.  相似文献   

13.
We have previously reported that two highly conserved amino acids in the C-terminal domain of rat insulin-like growth factor-binding protein (IGFBP)-5, Gly(203) and Gln(209), are involved in binding to insulin-like growth factor (IGF)-1. Here we report that mutagenesis of both amino acids simultaneously (C-Term mutant) results in a cumulative effect and an even greater reduction in IGF-I binding: 30-fold measured by solution phase IGF binding assay and 10-fold by biosensor analysis. We compared these reductions in ligand binding to the effects of specific mutations of five amino acids in the N-terminal domain (N-Term mutant), which had previously been shown by others to cause a very large reduction in IGF-I binding (). Our results confirm this as the major IGF-binding site. To prove that the mutations in either N- or C-Term were specific for IGF-I binding, we carried out CD spectroscopy and showed that these alterations did not lead to gross conformational changes in protein structure for either mutant. Combining these mutations in both domains (N+C-Term mutant) has a cumulative effect and leads to a 126-fold reduction in IGF-I binding as measured by biosensor. Furthermore, the equivalent mutations in the C terminus of rat IGFBP-2 (C-Term 2) also results in a significant reduction in IGF-I binding, suggesting that the highly conserved Gly and Gln residues have a conserved IGF-I binding function in all six IGFBPs. Finally, although these residues lie within a major heparin-binding site in IGFBP-5 and -3, we also show that the mutations in C-Term have no effect on heparin binding.  相似文献   

14.
Serum mannose-binding protein (MBP) initiates the lectin branch of the complement cascade by binding to sugars on the surfaces of microorganisms and activating two MBP-associated serine proteases (MASP-1 and MASP-2). Rat serum MBP consists of oligomers containing up to four copies of a subunit that is composed of three identical polypeptide chains. Biophysical analysis of intact and truncated MASPs indicates that each MASP is a homodimer that is stabilized through interactions involving an N-terminal CUB domain. The binding sites for MBP are formed from the three N-terminal MASP domains, in which two CUB modules interact with MBP. Each MASP dimer contains binding sites for two MBP subunits. Both sites must be occupied by subunits from a single MBP oligomer to form a stable complex. Thus, the smallest functional unit for complement activation consists of MBP dimers bound to MASP-1 or MASP-2 homodimers. Trimers and tetramers of MBP form complexes containing up to two MASPs. The results reveal how MASP-1 and MASP-2 can function independently to activate the complement cascade.  相似文献   

15.
Complement activation contributes directly to health and disease. It neutralizes pathogens and stimulates immune processes. Defects lead to immunodeficiency and autoimmune diseases, whereas inappropriate activation causes self-damage. In the lectin and classical pathways, complement is triggered upon recognition of a pathogen by an activating complex. Here we present the first structure of such a complex in the form of the collagen-like domain of mannan-binding lectin (MBL) and the binding domain of its associated protease (MASP-1/-3). The collagen binds within a groove using a pivotal lysine side chain that interacts with Ca(2+)-coordinating residues, revealing the essential role of Ca(2+). This mode of binding is prototypic for all activating complexes of the lectin and classical pathways, and suggests a general mechanism for the global changes that drive activation. The structural insights reveal a new focus for inhibitors and we have validated this concept by targeting the binding pocket of the MASP.  相似文献   

16.
Lee KH  Holl MM 《Biopolymers》2011,95(6):401-409
Molecular dynamics simulations were carried out to calculate the free energy change difference of two collagen-like peptide models for Gly --> Ser mutations causing two different osteogenesis imperfecta phenotypes. These simulations were performed to investigate the impact of local amino acid sequence environment adjacent to a mutation site on the stability of the collagen. The average free energy differences for a Gly --> Ser mutant relative to a wild type are 3.4 kcal/mol and 8.2 kcal/mol for a nonlethal site and a lethal site, respectively. The free energy change differences of mutant containing two Ser residues relative to the wild type at the nonlethal and lethal mutation sites are 4.6 and 9.8 kcal/mol, respectively. Although electrostatic interactions stabilize mutants containing one or two Ser residues at both mutation sites, van der Waals interactions are of sufficient magnitude to cause a net destabilization. The presence of Gln and Arg near the mutation site, which contain large and polar side chains, provide more destabilization than amino acids containing small and nonpolar side chains.  相似文献   

17.
Bodian DL  Madhan B  Brodsky B  Klein TE 《Biochemistry》2008,47(19):5424-5432
Osteogenesis imperfecta (OI), or brittle bone disease, often results from missense mutation of one of the conserved glycine residues present in the repeating Gly-X-Y sequence characterizing the triple-helical region of type I collagen. A composite model was developed for predicting the clinical lethality resulting from glycine mutations in the alpha1 chain of type I collagen. The lethality of mutations in which bulky amino acids are substituted for glycine is predicted by their position relative to the N-terminal end of the triple helix. The effect of a Gly --> Ser mutation is modeled by the relative thermostability of the Gly-X-Y triplet on the carboxy side of the triplet containing the substitution. This model also predicts the lethality of Gly --> Ser and Gly --> Cys mutations in the alpha2 chain of type I collagen. The model was validated with an independent test set of six novel Gly --> Ser mutations. The hypothesis derived from the model of an asymmetric interaction between a Gly --> Ser mutation and its neighboring residues was tested experimentally using collagen-like peptides. Consistent with the prediction, a significant decrease in stability, calorimetric enthalpy, and folding time was observed for a peptide with a low-stability triplet C-terminal to the mutation compared to a similar peptide with the low-stability triplet on the N-terminal side. The computational and experimental results together relate the position-specific effects of Gly --> Ser mutations to the local structural stability of collagen and lend insight into the etiology of OI.  相似文献   

18.
Multivalent ligand binding by serum mannose-binding protein.   总被引:6,自引:0,他引:6  
The serum-type mannose-binding protein (MBP) is a defense molecule that has carbohydrate-dependent bactericidal effects. It shares with mammalian and chicken hepatic lectins similarity in the primary structure of the carbohydrate-recognition domain, as well as the ligand-binding mode: a high affinity (KD approximately nM) is generated by clustering of approximately 30 terminal target sugar residues on a macromolecule, such as bovine serum albumin, although the individual monosaccharides have low affinity (KD 0.1-1 mM). On the other hand, MBP does not manifest any significant affinity enhancement toward small, di- and trivalent ligands, in contrast to the hepatic lectins whose affinity toward divalent ligands of comparable structures increased from 100- to 1000-fold. Such differences may be explained on the basis of different subunit organization between the hepatic lectins and MBP.  相似文献   

19.
Ficolins are a group of proteins mainly consisting of collagen-like and fibrinogen-like domains and are thought to play a role in innate immunity via their carbohydrate-binding activities. Two types of ficolins have been identified in mice, ficolin A, and ficolin B. However, their structure and function are not fully understood. In this study, we isolated the cDNA encoding a novel variant of ficolin A having a shorter collagen-like domain and a longer gap sequence, which was generated from the ficolin A gene by alternative splicing. We delineated the structure and function of mouse ficolins, including this splicing variant, by preparing the respective recombinants. Recombinant ficolin A, its splicing variant, and ficolin B showed multimeric structures and revealed binding to both N-acetylglucosamine and N-acetylgalactosamine. Interestingly, ficolin B specifically recognized sialic acid residues. Ficolin A and its variant, but not ficolin B, bound to mannose-binding lectin (MBL)-associated serine protease-2 (Masp-2) and small MBL-associated protein (smap), and the resulting complexes showed a potent complement activating capacity. In addition, smap competed with Masp-2 in association with ficolin A and its variant, and inhibited the complement activation by the ficolin A (or ficolin A variant)/MASP-2 complex, indicating its regulatory role in the lectin pathway. These results suggest that ficolin A and its variant function as recognition molecules of the lectin pathway, and ficolin B plays a distinct role through its unique carbohydrate-binding specificity. The nucleotide sequences reported in this paper have been submitted to the DDBJ, EMBL, and GenBank nucleotide sequence databases and have been assigned accession numbers AB222271 for ficolin A variant cDNA.  相似文献   

20.
Serum mannan-binding protein (MBP), a lectin specific for mannose and N-acetylglucosamine, was revealed to activate the complement system as measured by passive hemolysis using sheep erythrocytes coated with yeast mannan. In contrast, rat liver MBP, which shares many properties in common with serum MBP, could not activate complement at all. The activation by serum MBP was inhibited effectively by the presence of haptenic sugars and dependent absolutely upon the presence of C4, indicating that the activation is initiated by the sugar binding activity of MBP and proceeds through the classical pathway. The 25 NH2-terminal amino acid sequence of rat serum MBP determined in this study was completely matched with that of MBP-A deduced from cDNA sequence by Drickamer et al. (Drickamer, K., Dordal, M. S., and Reynolds, L. (1986) J. Biol. Chem. 261, 6878-6887), revealing that MBP-A is in fact identical with serum MBP. On the basis of the knowledge of primary structures and physicochemical properties of rat serum and liver MBPs, a possible mechanism of the complement activation by serum MBP is discussed with reference to close similarity in the gross structures of serum MBP and C1q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号