首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene encoding a so far uncharacterized β-peptidyl aminopeptidase from the opportunistic human pathogen Pseudomonas aeruginosa PAO1 was cloned and actively expressed in the heterologue host Escherichia coli. The gene was identified in the genome sequence by its homology to the S58 family of peptidases. The sequence revealed an open reading frame of 1,101 bp with a deduced amino acid sequence of 366 amino acids. The gene was amplified by PCR, ligated into pET22b(+) and was successfully expressed in E. coli BL21 (DE3). It was shown that the enzyme consists of two polypeptides (α- and β-subunit), which are processed from the precursor. The enzyme is specific for N-terminal β-alanyl dipeptides (β-Ala-Xaa). BapF hydrolyses efficiently β-alanine at the N-terminal position, including H-β3hAla-pNA, H–D-β3hAla-pNA and β-Ala-l-His (l-carnosine). d- and l-alaninamide were also hydrolysed by the enzyme.  相似文献   

2.
Brevundimonas diminuta TPU 5720 produces an amidase acting l-stereoselectively on phenylalaninamide. The enzyme (LaaABd) was purified to electrophoretic homogeneity by ammonium sulfate fractionation and four steps of column chromatography. The final preparation gave a single band on SDS-PAGE with a molecular weight of ≈53,000. The native molecular weight of the enzyme was about 288,000 based on gel filtration chromatography, suggesting that the enzyme is active as a homohexamer. It had maximal activity at 50°C and pH 7.5. LaaABd lost its activity almost completely on dialysis against potassium phosphate buffer (pH 7.0), and the amidase activity was largely restored by the addition of Co2+ ions. The enzyme was, however, inactivated in the presence of ethylenediaminetetraacetic acid even in the presence of Co2+, suggesting that LaaABd is a Co2+-dependent enzyme. LaaABd had hydrolyzing activity toward a broad range of l-amino acid amides including l-phenylalaninamide, l-glutaminamide, l-leucinamide, l-methioninamide, l-argininamide, and l-2-aminobutyric acid amide. Using information on the N-terminal amino acid sequence of the enzyme, the gene encoding LaaABd was cloned from the chromosomal DNA of the strain and sequenced. Analysis of 4,446 bp of the cloned DNA revealed the presence of seven open-reading frames (ORFs), one of which (laaA Bd ) encodes the amidase. LaaABd is composed of 491 amino acid residues (calculated molecular weight 51,127), and the deduced amino acid sequence exhibits significant similarity to that of ORFs encoding hypothetical cytosol aminopeptidases found in the genomes of Caulobacter crescentus, Bradyrhizobium japonicum, Rhodopseudomonas palustris, Mesorhizobium loti, and Agrobacterium tumefaciens, and leucine aminopeptidases, PepA, from Rickettsia prowazekii, Pseudomonas putida ATCC 12633, and Escherichia coli K-12. The laaA Bd gene modified in the nucleotide sequence upstream from its start codon was overexpressed in an E. coli transformant. The activity of the recombinant LaaABd in cell-free extracts of the E. coli transformant was 25.9 units mg−1 with l-phenylalaninamide as substrate, which was 50 times higher than that of B. diminuta TPU 5720.  相似文献   

3.
Summary Inducible resistance to the glycopeptide antibiotics vancomycin and teicoplanin is mediated by plasmid pIP816 in Enterococcus faecium strain BM4147. Vancomycin induced the synthesis of a ca. 40 kDa membrane-associated protein designated VANA. The resistance protein was partially purified and its N-terminal sequence was determined. A 1761 by DNA restriction fragment of pIP816 was cloned into Escherichia coli and sequenced. When expressed in E. coli, this fragment encoded a ca. 40 kDa protein that comigrated with VANA from enterococcal membrane fractions. The ATG translation initiation codon for VANA specified the methionine present at the N-terminus of the protein indicating the absence of signal peptide processing. The amino acid sequence deduced from the sequence of the vanA gene consisted of 343 amino acids giving a protein with a calculated Mr of 37400. VANA was structurally related to the d-alanyl-d-alanine (d-ala-d-ala) ligases of Salmonella typhimurium (36% amino acid identity) and of E. coli (28%). The vanA gene was able to transcomplement an E. coli mutant with thermosensitive d-ala-d-ala ligase activity. Thus, the inducible resistance protein VANA was structurally and functionally related to cytoplasmic enzymes that synthesize the target of glycopeptide antibiotics. Based on these observations we discuss the possibility that resistance is due to modification of the glycopeptide target.  相似文献   

4.
An epoxide hydrolase gene of about 0.8 kb was cloned from Rhodococcus opacus ML-0004, and the open reading frame (ORF) sequence predicted a protein of 253 amino acids with a molecular mass of about 28 kDa. An expression plasmid carrying the gene under the control of the tac promotor was introduced into Escherichia coli, and the epoxide hydrolase gene was successfully expressed in the recombinant strains. Some characteristics of purified recombinant epoxide hydrolase were also studied. Epoxide hydrolase showed a high stereospecificity for l(+)-tartaric acid, but not for d(+)-tartaric acid. The epoxide hydrolase activity could be assayed at the pH ranging from 3.5 to 10.0, and its maximum activity was obtained between pH 7.0 and 7.5. The enzyme was sensitive to heat, decreasing slowly between 30°C and 40°C, and significantly at 45°C. The enzyme activity was activated by Ca2+ and Fe2+, while strongly inhibited by Ag+ and Hg+, and slightly inhibited by Cu2+, Zn2+, Ba2+, Ni+, EDTA–Na2 and fumarate.  相似文献   

5.
A gene encoding mannitol-2-dehydrogenase (E.C. 1.1.1.138) (MDH) was cloned from Lactobacillus reuteri and expressed in Escherichia coli. The 1,008-bp gene encodes a protein consisting of 336 amino acids, with a predicted molecular mass of 35,920 Da. The deduced amino acid sequence of L. reuteri MDH (LRMDH) is 77% and 76% similar to the MDHs from Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides, respectively. The purified recombinant enzyme appears as a single band of 40 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but gel filtration indicates that the native enzyme is a dimer. The optimum temperature for the recombinant enzyme is 37°C, the pH optima for D-fructose reduction and D-mannitol oxidation are 5.4 and 6.2, respectively. The Km values for NAD (9 mM) and NADH (0.24 mM) are significantly higher than those for NADP (0.35 mM) and NADPH (0.04 mM). The Km values of LRMDH for D-fructose and D-mannitol are 34 mM and 54 mM, respectively. Contrary to what the enzyme sequence suggests, recombinant LRMDH contains a single catalytic zinc per subunit.  相似文献   

6.
Ketopantoic acid (KPA) reductase catalyzes the stereospecific reduction of ketopantoic acid to d-pantoic acid. Based on the N-terminal amino acid sequence of KPA reductase from Stenotrophomonas maltophilia 845, the KPA reductase gene was cloned from S. maltophilia NBRC14161 and sequenced. This gene contains an open reading frame of 777 bp encoding 258 amino acid residues, and the deduced amino acid sequence showed high similarity to the SDR superfamily proteins. An expression vector, pETSmKPR, containing the full KPA reductase gene was constructed and introduced into Escherichia coli BL21 (DE3) to overexpress the enzyme. Bioreduction of KPA using E. coli transformant cells coexpressing KPA reductase together with cofactor regeneration enzyme gene was also performed. The conversion yield of KPA to d-pantoic acid reached over 88% with a substrate concentration up to 1.17 M.  相似文献   

7.
NADP-dependent glutamate dehydrogenase (l-glutamate: NADP oxidoreductase, deaminating, EC 1.4.1.4) from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) was purified to homogeneity for characterization. The enzyme retained its full activity on heating at 95°C for 30 min, and the maximum activity in l-glutamate deamination was obtained around 100°C. The enzyme showed a strict specificity for l-glutamate and NADP on oxidative deamination and for 2-oxoglutarate and NADPH on reductive amination. The K m values for NADP, l-glutamate, NADPH, 2-oxoglutarate, and ammonia were 0.039, 3.3, 0.022, 1.7, and 83 mM, respectively. On the basis of the N-terminal amino acid sequence, the encoding gene was identified in the A. pernix K1 genome, cloned, and expressed in Escherichia coli. Analysis of the nucleotide sequence revealed an open reading frame of 1257 bp starting with a minor TTG codon and encoding a protein of 418 amino acids with a molecular weight of 46 170. Phylogenetic analysis revealed that the glutamate dehydrogenase from A. pernix K1 clustered with those from aerobic Sulfolobus solfataricus, Sulfolobus shibatae, and anaerobic Pyrobaculum islandicum in Crenarchaeota, and it separated from another cluster of the enzyme from Thermococcales in Euryarchaeota. The branching pattern of the enzymes from A. pernix K1, S. solfataricus, S. shibatae, and Pb. islandicum in the phylogenetic tree coincided with that of 16S rDNAs obtained from the same organisms. Received: April 24, 2000 / Accepted: August 10, 2000  相似文献   

8.
Summary The nucleotide sequence of a 3.6 kb DNA fragment containing a cellodextrinase gene (celA) fromRuminococcus flavefaciens FD-1 was determined. The gene was expressed from its own regulatory region inEscherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a TTG start codon. The complete amino acid sequence of the CeIA enzyme (352 residues) was deduced and showed no significant homology to cellulases from other oganisms. Two lysozymetype active sites were found in the amino-terminal third of the enzyme. InE. coli the cloned CeIA protein was translocated into the periplasm. The lack of a typical signal sequence, and the results of transposonphoA mutagenesis experiments indicated that CeIA is secreted by a mechanism other than a leader peptide.Abbreviations CMCase carboxymethylcellulase - celA gene coding for CeIA - CelA cellodextrinase - ORF open reading frame - phoA gene encoding alkaline phosphatase - pNPC p-nitrophenyl--d-cellobioside  相似文献   

9.
The gene for the Cu,Zn superoxide dismutase (Cu,ZnSOD) from Saccharomyces cerevisiae was cloned and expressed in Escherichia coli LMG194. The sod gene sequence obtained is 465 bp and encodes 154 amino acid residues. The sod gene sequence was cloned into the E. coli periplasmic expression vector pBAD/gIIIA, yielding pBAD-1. E. coli was transformed using the constructed plasmid pBAD-1 and induced by adding 0.02% l-arabinose to express Cu,ZnSOD protein. The results indicated that Cu,ZnSOD enzyme activity in the periplasmic space was about fivefold to sixfold higher in the recombinant E. coli strains bearing the sod gene than in the control strains. The yields of Cu,ZnSOD were about threefold higher at 48 h than at 24 h in the recombinant E. coli cells. Significantly higher survival of strains was obtained in cells bearing the sod gene than in the control cells when the cells were treated by heat shock and superoxide-generating agents, such as paraquat and menadione.  相似文献   

10.
An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypeptide of 496 amino acid residues. The gene was overexpressed in E. coli and the protein was purified using nickel-nitrilotriacetic acid chromatography. The purified enzyme showed the highest catalytic efficiency ever reported, with a k cat of 14,504 min−1 and a k cat/K m of 121 min−1 mM−1 for L-arabinose. A homology model of B. subtilis L-AI was constructed based on the X-ray crystal structure of E. coli L-AI. Molecular dynamics simulation studies of the enzyme with the natural substrate, L-arabinose, and an analogue, D-galactose, shed light on the unique substrate specificity displayed by B. subtilis L-AI only towards L-arabinose. Although L-AIs have been characterized from several other sources, B. subtilis L-AI is distinguished from other L-AIs by its high substrate specificity and catalytic efficiency for L-arabinose.  相似文献   

11.
Summary A DNA fragment containing the gene for a cell wall hydrolase of Bacillus licheniformis was cloned into Escherichia coli. Sequencing of the fragment showed the presence of an open reading frame which encodes a polypeptide of 253 amino acids with a molecular mass of 27 513. The gene was designated as cwlM, for cell wall lysis. The deduced amino acid sequence indicated that there is a repeated sequence consisting of 33 amino acid residues in the C-terminal region. Deletion of the C-terminal region did not lead to any loss of cell wall lytic activity. The gene product purified from E. coli cells harboring a cwlM-bearing plasmid exhibited a M r value of 29 kDa on SDS-polyacrylamide gels, and characterization of the specific substrate bond cleaved by CWLM indicated that the enzyme is an N-acetylmuramoyl-l-alanine amidase (EC 3.5.1.28). The enzyme hydrolyzed the cell wall of Micrococcus luteus more efficiently than those of B. licheniformis and B. subtilis, but the truncated CWLM (lacking the C-terminal region) had lost this preference. CWLM prepared from B. subtilis cells harboring a plasmid containing cwlM had a similar M r value to that from E. coli. Amino acid sequence homologies between CWLM and other amidases, and their protein structures are discussed.  相似文献   

12.
The DNA polymerase I gene of a newly described deep-sea hydrothermal vent Archaea species, Thermococcus fumicolans, from IFREMERS's collection of hyperthermophiles has been cloned in Escherichia coli. As in Thermococcus litoralis, the gene is split by two intervening sequences (IVS) encoding inteins inserted in sites A and C of family B DNA polymerases. The entire DNA polymerase gene, containing both inteins, was expressed at 30°C in E. coli strain BL21(DE3)pLysS using the pARHS2 expression vector. The native polypeptide precursor of 170 kDa was obtained, and intein splicing as well as ligation of the three exteins was observed in vitro after heat exposure. The recombinant enzyme was purified and some of its activities were characterized: polymerization, thermostability, exonuclease activities, and fidelity. Received: September 17, 1999 / Accepted: March 21, 2000  相似文献   

13.
Wang X  Fang B  Luo J  Li W  Zhang L 《Biotechnology letters》2007,29(9):1409-1412
The xylose reductase (XR) gene (xyl1) from Candida shehatae was cloned and expressed in Escherichia coli, and purified as a His6-tagged fusion protein. The recombinant XR had Km values for NADH than NADPH of 150 μM and 20 μM, respectively. The optimal reaction was at pH 6.5 and 35°C. The enzyme was specific for d-xylese.  相似文献   

14.
d-Xylulose-forming d-arabitol dehydrogenase (aArDH) is a key enzyme in the bio-conversion of d-arabitol to xylitol. In this study, we cloned the NAD-dependent d-xylulose-forming d-arabitol dehydrogenase gene from an acetic acid bacterium, Acetobacter suboxydans sp. The enzyme was purified from A. suboxydans sp. and was heterogeneously expressed in Escherichia coli. The native or recombinant enzyme was preferred NAD(H) to NADP(H) as coenzyme. The active recombinant aArDH expressed in E. coli is a homodimer, whereas the native aArDH in A. suboxydans is a homotetramer. On SDS–PAGE, the recombinant and native aArDH give one protein band at the position corresponding to 28 kDa. The optimum pH of polyol oxidation and ketone reduction is found to be pH 8.5 and 5.5 respectively. The highest reaction rate is observed when d-arabitol is used as the substrate (K m = 4.5 mM) and the product is determined to be d-xylulose by HPLC analysis.  相似文献   

15.
d-Amino acid N-acetyltransferase is a unique enzyme of Saccharomyces cerevisiae acting specifically on d-amino acids. The enzyme was found to be encoded by HPA3, a putative histone/protein acetyltransferase gene, and we purified its gene product, Hpa3p, from recombinant Escherichia coli cells. Hpa3p shares 49% sequence identity and 81% sequence similarity with a histone acetyltransferase, Hpa2p, of S. cerevisiae. Hpa3p acts on a wide range of d-amino acids but shows extremely low activity toward histone. However, Hpa2p does not act on any of the free amino acids except l-lysine and d-lysine. Kinetic analyses suggest that Hpa3p catalyzes the N-acetylation of d-amino acids through an ordered bi-bi mechanism, in which acetyl-CoA is the first substrate to be bound and CoA is the last product to be liberated.  相似文献   

16.
Alanine racemase catalyzes the interconversion of d- and l-alanine and plays an important role in supplying d-alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET–alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His6-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni2+–NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with l-alanine and l-isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0–11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr2+, Mn2+, Co2+, and Ni2+ obviously enhanced enzymatic activity, while the Cu2+ ion showed inhibitory effects.  相似文献   

17.
l -Aspartate β-decarboxylase (Asd) is an important enzyme to produce l-alanine and d-aspartate. The genomic library of Alcaligenes faecalis CCRC 11585 was cloned into pBK-CMV and transformed into Escherichia coli. One clone, which carried the asd gene and expressed Asd activity, was isolated and chosen for further study. PBK-asdAE1 was subcloned and its sequence analysis revealed an open reading frame, consisting of 1599 bp, that encodes a 533-amino-acid polypeptide. The nucleotide sequence of the asd gene from A. faecalis CCRC 11585 (asdA) showed 84% identity with that from Pseudomonas dacunhae CCRC 12623, and the amino acid sequence showed 93% identity. The amino acid sequence of the AsdA showed 51–58% homology with various aminotransferases. Alignment of the AsdA with several aspartate or tyrosine aminotransferases revealed 17 conserved amino acids that appeared in most of the conserved amino acid residues within the pyridoxal-5′-phosphate (PLP) binding domains of aminotransferases. Furthermore, the asdA gene was cloned into expression vector pET-21a and transformed into E. coli BL21(DE3). A protein band sized at 61 kDa is present on the SDS-PAGE gel from the intracellular soluble form of E. coli BL21(DE3)/pET-asdA. The specific activities of the pET-AsdA purified by using His-Bind chromatography is 215 U/mg at 45°C and pH 5.0, which is 1000-fold higher than that of the A. faecalis crude extract. This is the first report of an asdA gene sequence from A. faecalis and represents the potential application of a recombinant AsdA for production of l-alanine or d-aspartic acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 132–140. Received 02 November 1999/ Accepted in revised form 23 June 2000  相似文献   

18.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

19.
A generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors. With one correctable exception, the amino acid substitutions required for restriction site placements were compatible with polyketide production. When expressed in E. coli the codon-optimized synthetic gene cluster produced significantly more protein than did the wild-type sequence. Indeed, for optimal polyketide production, PKS expression had to be down-regulated by promoter attenuation to achieve balance with expression of the accessory proteins needed to support polyketide biosynthesis.  相似文献   

20.
An open reading frame encoding a putative bi-functional β-d-xylosidase/α-l-arabinosidase (Sso3032) was identified on the genome sequence of Sulfolobus solfataricus P2, the predicted gene product showing high amino-acid sequence similarity to bacterial and eukaryal individual β-d-xylosidases and α-l-arabinosidases as well as bi-functional enzymes such as the protein from Thermoanaerobacter ethanolicus and barley. The sequence was PCR amplified from genomic DNA of S. solfataricus P2 and heterologous gene expression obtained in Escherichia coli, under optimal conditions for overproduction. Specific assays performed at 75°C revealed the presence in the transformed E. coli cell extracts of this archaeal activity involved in sugar hydrolysis and specific for both substrates. The recombinant protein was purified by thermal precipitation of the host proteins and ethanol fractionation and other properties, such as high thermal activity and thermostability could be determined. The protein showed a homo-tetrameric structure with a subunit of molecular mass of 82.0 kDa which was in perfect agreement with that deduced from the cloned gene. Northern blot analysis of the xarS gene indicates that it is specifically induced by xylan and repressed by monosaccharides like d-glucose and l-arabinose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号