首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active centers of the hairpin and VS ribozymes are both generated by the interaction of two internal loops, and both ribozymes use guanine and adenine nucleobases to accelerate cleavage and ligation reactions. The centers are topologically equivalent and the relative positioning of key elements the same. There is good evidence that the cleavage reaction of the VS ribozyme is catalyzed by the guanine (G638) acting as general base and the adenine (A756) as general acid. We now critically evaluate the experimental mechanistic evidence for the hairpin ribozyme. We conclude that all the available data are fully consistent with a major contribution to catalysis by general acid-base catalysis involving the adenine (A38) and guanine (G8). It appears that the two ribozymes are mechanistically equivalent.  相似文献   

2.
The nucleolytic ribozymes use general acid-base catalysis to contribute significantly to their rate enhancement. The VS (Varkud satellite) ribozyme uses a guanine and an adenine nucleobase as general base and acid respectively in the cleavage reaction. The hairpin ribozyme is probably closely similar, while the remaining nucleolytic ribozymes provide some interesting contrasts.  相似文献   

3.
Understanding how self-cleaving ribozymes mediate catalysis is crucial in light of compelling evidence that human and bacterial gene expression can be regulated through RNA self-cleavage. The hairpin ribozyme catalyzes reversible phosphodiester bond cleavage through a mechanism that does not require divalent metal cations. Previous structural and biochemical evidence implicated the amidine group of an active site adenosine, A38, in a pH-dependent step in catalysis. We developed a way to determine microscopic pK(a) values in active ribozymes based on the pH-dependent fluorescence of 8-azaadenosine (8azaA). We compared the microscopic pK(a) for ionization of 8azaA at position 38 with the apparent pK(a) for the self-cleavage reaction in a fully functional hairpin ribozyme with a unique 8azaA at position 38. Microscopic and apparent pK(a) values were virtually the same, evidence that A38 protonation accounts for the decrease in catalytic activity with decreasing pH. These results implicate the neutral unprotonated form of A38 in a transition state that involves formation of the 5'-oxygen-phosphorus bond.  相似文献   

4.
Utilization of proton transfer in catalysis, which is well known in the mechanisms of protein enzymes, has been described only relatively recently for RNA enzymes. In this article, we present a current understanding of proton transfer by nucleic acids. Rate enhancement and specificity conferred by general acid-base catalysis are discussed. We also present possibilities for electrostatic catalysis from general acids and bases as well as cationic base pairs. The microenvironments of a large RNA provide the possibility of histidine-like pK(a)s for proton transfer, as well as lysine- and arginine-like pK(a)s for electrostatic catalysis. Discussion on proton transfer focuses on the hepatitis delta virus (HDV) and hairpin ribozymes, with select examples drawn from the protein literature. Discussion on electrostatic catalysis also draws on these two ribozymes, and a postulate for electrostatic catalysis by a cationic base pair in the mechanism of peptidyl transfer in the ribosome is presented. We also provide a perspective on possibilities for phosphoryl transfer mechanisms involving phosphorane intermediates and unusual tautomeric forms of the bases. Lastly, a distinction is made between ground state and "transition state" pK(a)s. We favor a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and therefore suggest that "pK(a) changes in the transition state" do not provide an acceptable explanation for observed pH-rate profiles.  相似文献   

5.
pK(a) calculations based on the Poisson-Boltzmann equation have been widely used to study proteins and, more recently, DNA. However, much less attention has been paid to the calculation of pK(a) shifts in RNA. There is accumulating evidence that protonated nucleotides can stabilize RNA structure and participate in enzyme catalysis within ribozymes. Here, we calculate the pK(a) shifts of nucleotides in RNA structures using numerical solutions to the Poisson-Boltzmann equation. We find that significant shifts are predicted for several nucleotides in two catalytic RNAs, the hairpin ribozyme and the hepatitis delta virus ribozyme, and that the shifts are likely to be related to their functions. We explore how different structural environments shift the pK(a)s of nucleotides from their solution values. RNA structures appear to use two basic strategies to shift pK(a)s: (a) the formation of compact structural motifs with structurally-conserved, electrostatic interactions; and (b) the arrangement of the phosphodiester backbone to focus negative electrostatic potential in specific regions.  相似文献   

6.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

7.
A novel chemo-genetic approach for the analysis of general acid-base catalysis by nucleobases in ribozymes is reviewed. This involves substitution of a C-nucleoside with imidazole in place of a natural nucleobase. The Varkud satellite ribozyme in which the nucleobase at the critical 756 position has been replaced by imidazole is active in both cleavage and ligation reactions. Similarly, a modified hairpin ribozyme with the nucleobase at position 8 substituted by imidazole is active in cleavage and ligation reactions. Although the rates are lower than those of the natural ribozymes, they are significantly greater than other variants at these positions. The dependence of the hairpin ribozyme reaction rates on pH has been studied. Both cleavage and ligation reactions display a bell-shaped pH dependence, consistent with general acid-base catalysis involving the nucleotide at position 8.  相似文献   

8.
Ribozymes are RNA molecules that act as chemical catalysts. In contemporary cells, most known ribozymes carry out phosphoryl transfer reactions. The nucleolytic ribozymes comprise a class of five structurally-distinct species that bring about site-specific cleavage by nucleophilic attack of the 2'-O on the adjacent 3'-P to form a cyclic 2',3'-phosphate. In general, they will also catalyse the reverse reaction. As a class, all these ribozymes appear to use general acid-base catalysis to accelerate these reactions by about a million-fold. In the Varkud satellite ribozyme, we have shown that the cleavage reaction is catalysed by guanine and adenine nucleobases acting as general base and acid, respectively. The hairpin ribozyme most probably uses a closely similar mechanism. Guanine nucleobases appear to be a common choice of general base, but the general acid is more variable. By contrast, the larger ribozymes such as the self-splicing introns and RNase P act as metalloenzymes.  相似文献   

9.
A guanine (G638) within the substrate loop of the VS ribozyme plays a critical role in the cleavage reaction. Replacement by any other nucleotide results in severe impairment of cleavage, yet folding of the substrate is not perturbed, and the variant substrates bind the ribozyme with similar affinity, acting as competitive inhibitors. Functional group substitution shows that the imino proton on the N1 is critical, suggesting a possible role in general acid-base catalysis, and this in accord with the pH dependence of the reaction rate for the natural and modified substrates. We propose a chemical mechanism for the ribozyme that involves general acid-base catalysis by the combination of the nucleobases of guanine 638 and adenine 756. This is closely similar to the probable mechanism of the hairpin ribozyme, and the active site arrangements for the two ribozymes appear topologically equivalent. This has probably arisen by convergent evolution.  相似文献   

10.
RNA performs a wide range of functions in biology including catalysis of chemical reactions. A major goal in the field of ribozyme chemical biology is to understand these functions in molecular terms. There is increasing evidence that ribozymes can use their nucleobases directly in chemical catalysis in a variety of ways. These include hydrogen bonding to the transition state, stabilizing charge development, and transferring protons as general acid-base catalysts. This article highlights recent kinetic, structural, single molecule, and synthetic approaches that have been used to probe the roles of ribozyme nucleobases in phosphodiester bond cleavage.  相似文献   

11.
RNA catalysis is important in the processing and translation of RNA molecules, yet the mechanisms of catalysis are still unclear in most cases. We have studied the role of nucleobase catalysis in the hairpin ribozyme, where the scissile phosphate is juxtaposed between guanine and adenine bases. We show that a modified ribozyme in which guanine 8 has been substituted by an imidazole base is active in both cleavage and ligation, with ligation rates 10-fold faster than cleavage. The rates of both reactions exhibit bell-shaped dependence on pH, with pK(a) values of 5.7 +/- 0.1 and 7.7 +/- 0.1 for cleavage and 6.1 +/- 0.3 and 6.9 +/- 0.3 for ligation. The data provide good evidence for general acid-base catalysis by the nucleobases.  相似文献   

12.
Protein enzymes often use ionizable side chains, such as histidine, for general acid-base catalysis because the imidazole pK(a) is near neutral pH. RNA enzymes, on the other hand, are comprised of nucleotides which do not have apparent pK(a) values near neutral pH. Nevertheless, it has been recently shown that cytidine and adenine protonation can play an important role in both nucleic acid structure and catalysis. We have employed heteronuclear NMR methods to determine the pK(a) values and time scales of chemical exchanges associated with adenine protonation within the catalytically essential B domain of the hairpin ribozyme. The large, adenine-rich internal loop of the B domain allows us to determine adenine pK(a) values for a variety of non-Watson-Crick base pairs. We find that adenines within the internal loop have pK(a) values ranging from 4.8 to 5.8, significantly higher than the free mononucleotide pK(a) of 3. 5. Adenine protonation results in potential charge stabilization, hydrogen bond formation, and stacking interactions that are expected to stabilize the internal loop structure at low pH. Fast proton exchange times of 10-50 micros were determined for the well-resolved adenines. These results suggest that shifted pK(a) values may be a common feature of adenines in non-Watson-Crick base pairs, and identify two adenines which may participate in hairpin ribozyme active site chemistry.  相似文献   

13.
The hairpin ribozyme   总被引:4,自引:0,他引:4  
The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.  相似文献   

14.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

15.
Although the delta ribozymes have been studied for more than ten years the most important information concerning their structure and mechanism of catalysis were only obtained very recently. The crystal structure of the genomic delta ribozyme turns out to be an excellent example of the extraordinary properties of RNA molecules to fold into uniquely compact structures. Details of the X-ray structure have greatly stimulated further studies on the folding of the ribozymes into functionally active molecules as well as on the mechanism of RNA catalysis. The ability of the delta ribozymes to carry out general acid-base catalysis by nucleotide side chains has been assumed in two proposed mechanisms of self-cleavage. Recently, considerable progress has been also made in characterizing the catalytic properties of trans-acting ribozyme variants that are potentially attractive tools in the strategy of directed RNA degradation.  相似文献   

16.
The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution. The specificity and pH dependence of exogenous nucleobase rescue were consistent with several models of the rescue mechanism, including general acid base catalysis, electrostatic stabilization of negative charge in the transition state or a requirement for protonation to facilitate exogenous nucleobase binding. Detailed analyses of exogenous nucleobase rescue for both cleavage and ligation reactions now allow us to refine models of the rescue mechanism. Activity increased with increasing pH for both unmodified ribozyme reactions and unrescued reactions of abasic variants lacking G8. This similarity in pH dependence argues against a role for G8 as a general base catalyst, because G8 deprotonation could not be responsible for the pH-dependent transition in the abasic variant. Exogenous nucleobase rescue of both cleavage and ligation activity increased with decreasing pH, arguing against a role for rescuing nucleobases in general acid catalysis, because a nucleobase that contributes general acid catalysis in the cleavage pathway should provide general base catalysis in ligation. Analysis of the concentration dependence of cytosine rescue at high and low pH demonstrated that protonation promotes catalysis within the nucleobase-bound ribozyme complex but does not stabilize nucleobase binding in the ground state. These results support an electrostatic stabilization mechanism in which exogenous nucleobase binding counters negative charge that develops in the transition state.  相似文献   

17.
Tertiary structure in globular RNA folds can create local environments that lead to pKa perturbation of specific nucleotide functional groups. To assess the prevalence of functionally relevant adenosine-specific pKa perturbation in RNA structure, we have altered the nucleotide analog interference mapping (NAIM) approach to include a series of a phosphorothioate-tagged adenosine analogs with shifted N1 pKa values. We have used these analogs to analyze the hairpin ribozyme, a small self-cleaving/ligating RNA catalyst that is proposed to employ a general acid-base reaction mechanism. A single adenosine (A10) within the ribozyme active site displayed an interference pattern consistent with a functionally significant base ionization. The exocyclic amino group of a second adenosine (A38) contributes substantially to hairpin catalysis, but ionization of the nucleotide does not appear to be important for activity. Within the hairpin ribozyme crystal structure, A10 and A38 line opposite edges of a solvent-excluded cavity adjacent to the 5'-OH nucleophile. The results are inconsistent with the model of ribozyme chemistry in which A38 acts as a general acid-base catalyst, and suggest that the hairpin ribozyme uses an alternative mechanism to achieve catalytic rate enhancement that utilizes functional groups within a solvent-excluded cleft in the ribozyme active site.  相似文献   

18.
The hairpin ribozyme is a small catalytic RNA that has been reengineered resulting in a number of variants with extended or even new functions. Thus, manipulation of the hairpin ribozyme structure has allowed for activity control by external effectors, namely oligonucleotides, flavine mononucleotide, and adenine. Hairpin ribozyme-derived twin ribozymes that mediate RNA fragment exchange reactions as well as self-processing hairpin ribozymes were designed. Furthermore, several hairpin ribozyme variants have been engineered for knock down of specific RNA substrates by adapting the substrate-binding domain to the specific target sequence. This review will focus on hairpin ribozymes possessing structural extensions/variations and thus functionally differing from the parent hairpin ribozyme.  相似文献   

19.
The discovery of RNA catalysis provided a paradigm shift in biology, insight into the evolution of life on the planet and a challenge to understand its mechanistic origins. RNA has limited catalytic resources that must be used to maximal effect. Consequently, RNA catalysis tends to be multifactorial, with several processes contributing to an overall significant enhancement of reaction rate. These include general acid-base catalysis, electrostatic effects, and substrate orientation and proximity. The main players are the RNA nucleobases and bound metal ions. Although most ribozymes carry out phosphoryl transfer, the same considerations appear to apply to peptidyl transfer in the ribosome.  相似文献   

20.
Recently, major advances have been made toward increasing our understanding of small ribozyme structure and function. The first general acid-base catalytic mechanism for a ribozyme has been defined. Shifted nucleotide pK(a) values have been found to be surprisingly frequent structural elements. Finally, the dynamic nature of RNA catalysis has been highlighted through new structural and biochemical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号