首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, inexpensive, and sensitive assay for peptidase activity has been devised. The assay was performed in a microtiter plate and was based on fluorogenic peptide substrates, many of which are commercially available. 7-Amino-4-methyl coumarin the fluorescent product liberated during an incubation period of between 1 and 16 h, was detected by inspection of the plate under ultraviolet light of wavelength 356 nm. A fluorometer was not required. Using alpha-chymotrypsin as a model enzyme, with succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine 4-methyl-coumaryl-7-amide as substrate, it was shown that as little as 4 fmol of enzyme could be detected. The method was non-quantitative and was particularly suited to location of enzyme activity in fractions during a purification procedure. The validity of the assay was demonstrated by detection of activity of a known enzyme, alpha-chymotrypsin, after its purification by size-exclusion high-performance liquid chromatography. The method was used to locate two forms of aminopeptidase activity, in fractions from size-exclusion chromatography of an extract from reproductive tissue of Helix aspersa, using L-leucine 4-methyl-coumaryl-7-amide as substrate.  相似文献   

2.
Endopeptidase activities of the CLN2 gene product (Cln2p)/tripeptidyl peptidase I (TPP-I), purified from rat spleen, were studied using the synthetic fluorogenic substrates. We designed and constructed decapeptides, based on the known sequence cleavage specificities of bacterial pepstatin-insensitive carboxyl proteases (BPICP). MOCAc-Gly-Lys-Pro-Ile-Pro-Phe-Phe-Arg-Leu-Lys(Dnp)r-NH(2) is readily hydrolyzed by Cln2p/TPP-I (K(cat)/K(m) = 7.8 s(-1) mM(-1)). The enzyme had a maximal activity at pH 3.0 for an endopeptidase substrate, but at pH 4.5 with respect to tripeptidyl peptidase activity. Both endopeptidase and tripeptidyl peptidase activities were strongly inhibited by Ala-Ala-Phe-CH(2)Cl, but not inhibited by tyrostatin, an inhibitor of bacterial pepstatin-insensitive carboxyl proteases, pepstatin, or inhibitors of serine proteases. Fibroblasts from classical late infantile neuronal ceroid lipofuscinosis patients have less than 5% of the normal tripeptidyl peptidase activity and pepstatin-insensitive endopeptidase activity. Cln2p/TPP-I is a unique enzyme with both tripeptidyl peptidase and endopeptidase activities for certain substrate specificity.  相似文献   

3.
To find a new trypsin-like enzyme, a simple assay method of the hydrolysis activity for trypsin has been found. We used 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) in the peptide labeling as a substrate for the trypsin-like peptidase in this study. The peptidase activity of trypsin was detected by using an AQC-chymotryptic peptide (AHP1) obtained from bovine hemoglobin. This showed that the substrate specificity of trypsin-like peptidase was distinguishable from that of the others by this procedure, and the method was used extensively in cases of various trypsin inhibitors with no significant interference from the concomitant.  相似文献   

4.
In this work, we have explored the biochemical changes characterizing the transition from vitellogenesis to follicular atresia, employing the hematophagous insect vector Dipetalogaster maxima as a model. Standardized insect rearing conditions were established to induce a gradual follicular degeneration stage by depriving females of blood meal during post-vitellogenesis. For the studies, hemolymph and ovaries were sampled at representative days of pre-vitellogenesis, vitellogenesis and early and late follicular atresia. When examined by scanning electron microscopy, ovarioles at the initial stage of atresia were small but still showed some degree of asynchronism, a feature that was lost in an advanced degeneration state. At late follicular atresia, in vivo uptake assays of fluorescently labeled vitellogenin (Vg-FITC) showed loss of competitiveness of oocytes to uptake vitellogenin. Circulating vitellogenin levels in atresia were significantly higher than those registered at pre-vitellogenesis, most likely to maintain appropriate conditions for another gonotrophic cycle if a second blood meal is available. Follicular atresia was also characterized by partial proteolysis of vitellin, which was evidenced in ovarian homogenates by western blot. When the activity of ovarian peptidases upon hemoglobin (a non-specific substrate) was tested, higher activities were detected at early and late atresia whereas the lowest activity was found at vitellogenesis. The activity upon hemoglobin was significantly inhibited by pepstatin A (an aspartic peptidase inhibitor), and was not affected by E64 (a cysteine peptidase inhibitor) at any tested conditions. The use of specific fluorogenic substrates demonstrated that ovarian homogenates at early follicular atresia displayed high cathepsin D-like activity, whereas no activity of either, cathepsin B or L was detected. Mass spectrometry analysis of the digestion products of the substrate Abz-AIAFFSRQ-EDDnp further confirmed the presence of a cathepsin D-like peptidase in ovarian tissue. In the context of our findings, the early activation of cathepsin D-like peptidase could be relevant in promoting yolk protein recycling and/or enhancing follicle removal.  相似文献   

5.
We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further. DeltaN54SppA(Tk) exhibited peptidase activity towards fluorogenic peptide substrates and was found to be highly thermostable. Moreover, the enzyme displayed a remarkable stability and preference for alkaline pH, with optimal activity detected at pH 10. DeltaN54SppA(Tk) displayed a K(m) of 240 +/- 18 microM and a V(max) of 27.8 +/- 0.7 micromol min(-1) mg(-1) towards Ala-Ala-Phe-4-methyl-coumaryl-7-amide at 80 degrees C and pH 10. The substrate specificity of the enzyme was examined in detail with a FRETS peptide library. By analyzing the cleavage products with liquid chromatography-mass spectrometry, deltaN54SppA(Tk) was found to efficiently cleave peptides with a relatively small side chain at the P-1 position and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg residue was preferred at the P-4 position, while substrates with negatively charged residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal sequences from the T. kodakaraensis genome sequence were examined, we found that the substrate specificity of deltaN54SppA(Tk) was in good agreement with its presumed role as a signal peptide peptidase in this archaeon.  相似文献   

6.
A highly sensitive fluorogenic hexosaminidase substrate, fluorescein di(N-acetyl-beta-D-glucosaminide) (FDGlcNAc), was prepared essentially as described previously [Chem. Pharm. Bull. 1993, 41, 314] with some modifications. The fluorescent analog is a substrate for a number of hexosaminidases but here we have focused on the cytoplasmic O-GlcNAcase isoforms. Kinetic analysis using purified O-GlcNAcase and its splice variant (v-O-GlcNAcase) expressed in Escherichia coli suggests that FDGlcNAc is a much more efficient substrate (Km = 84.9 microM) than the conventional substrate, para-nitrophenyl 2-acetamido-2-deoxy-beta-D-glucopyranoside (pNP-beta-GlcNAc, Km = 1.1 mM) and a previously developed fluorogenic substrate, 4-methylumbelliferyl 2-acetamido-2-deoxy-beta-D-glucopyranoside [MUGlcNAc, Km = 0.43 mM; J. Biol. Chem. 2005, 280, 25313] for O-GlcNAcase. The variant O-GlcNAcase, a protein lacking the C-terminal third of the full-length O-GlcNAcase, exhibited a Km of 2.1 mM with respect to FDGlcNAc. This shorter isoform was not previously thought to exhibit O-GlcNAcase activity based on in vitro studies with pNP-beta-GlcNAc. However, both O-GlcNAcase isoforms reduced O-GlcNAc protein levels extracted from HeLa and HT-29 cells in vitro, indicating that the splice variant is a bona fide O-GlcNAcase. Fluorescein di-N-acetyl-beta-D-galactosaminide (FDGalNAc) is not cleaved by these enzymes, consistent with previous findings that the O-GlcNAcase has substrate specificity toward O-GlcNAc but not O-GalNAc. The enzymatic activity of the shorter isoform of O-GlcNAcase was first detected by using highly sensitive fluorogenic FDGlcNAc substrate. The finding that O-GlcNAcase exists as two distinct isoforms has a number of important implications for the role of O-GlcNAcase in hexosamine signaling.  相似文献   

7.
We developed a method for the detection of phosphatase activity using fluorogenic substrates after polyacrylamide gel electrophoresis. When phosphatases such as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), protein phosphatase 2C (PP2C), protein phosphatase 5 (PP5), and alkaline phosphatase were resolved by polyacrylamide gel electrophoresis in the absence of SDS and the gel was incubated with a fluorogenic substrate such as 4-methylumbelliferyl phosphate (MUP), all of these phosphatase activities could be detected in situ. Although 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as well as MUP could be used as a fluorogenic substrate for an in-gel assay, MUP exhibited lower background fluorescence. Using this procedure, several fluorescent bands that correspond to endogenous phosphatases were observed after electrophoresis of various crude samples. The in-gel phosphatase assay could also be used to detect protein phosphatases resolved by SDS-polyacrylamide gel electrophoresis. In this case, however, the denaturation/renaturation process of resolved proteins was necessary for the detection of phosphatase activity. This procedure could be used for detection of renaturable protein phosphatases such as CaMKP and some other phosphatases expressed in cell extracts. The present fluorescent in-gel phosphatase assay is very useful, since no radioactive compounds or no special apparatus are required.  相似文献   

8.
A new far-red dual fluorogenic and chromogenic substrate, 5-glycylprolylglycylprolyl-9-di-3-sulfonyl-propylaminobenza[a]phenoxazonium perchlorate (GPGP-2SBPO), was developed for dipeptidyl peptidase IV (DPP-IV) sensing. The glycylprolylglycylprolyl tetrapeptide was chosen as the recognition sequence due to its stability under physiological conditions. In contrast, the truncated substrate, GP-2SBPO, containing only a glycylprolyl peptide, is unstable. Proteolysis of GPGP-2SBPO was assayed by monitoring the absorbance and fluorescence signals from the released fluorochrome, 2SBPO, at 625 and 670nm, respectively.  相似文献   

9.
Analysis of peptide metabolism by ruminal microorganisms   总被引:2,自引:0,他引:2  
Methods were developed for the determination of oligoalanine and other short-chain peptides and peptide analogs in ruminal fluid by using reverse-phase high-pressure liquid chromatography. Chromatographic analysis of the breakdown of (Ala)3 and (Ala)4 in ruminal fluid in vitro revealed that the predominant mechanism of hydrolysis was a dipeptidyl peptidase-like activity. Hydrolysis proceeded from the N terminal of the peptide chain; N-acetyl-(Ala)3 was broken down at 11% of the rate of breakdown of (Ala)3 or (Ala)3-p-nitroanilide. (Ala)2-p-nitroanilide was hydrolyzed most rapidly of the arylamide substrates tested, but fluorogenic 4-methoxy-2-naphthylamide (MNA) compounds were more convenient and potentially more versatile substrates than p-nitroanilides. Gly-Arg-MNA was the most rapidly hydrolyzed dipeptidyl peptidase substrate, suggesting that ruminal peptidase activity was predominantly of a type I specificity.  相似文献   

10.
Analysis of peptide metabolism by ruminal microorganisms.   总被引:5,自引:5,他引:0       下载免费PDF全文
Methods were developed for the determination of oligoalanine and other short-chain peptides and peptide analogs in ruminal fluid by using reverse-phase high-pressure liquid chromatography. Chromatographic analysis of the breakdown of (Ala)3 and (Ala)4 in ruminal fluid in vitro revealed that the predominant mechanism of hydrolysis was a dipeptidyl peptidase-like activity. Hydrolysis proceeded from the N terminal of the peptide chain; N-acetyl-(Ala)3 was broken down at 11% of the rate of breakdown of (Ala)3 or (Ala)3-p-nitroanilide. (Ala)2-p-nitroanilide was hydrolyzed most rapidly of the arylamide substrates tested, but fluorogenic 4-methoxy-2-naphthylamide (MNA) compounds were more convenient and potentially more versatile substrates than p-nitroanilides. Gly-Arg-MNA was the most rapidly hydrolyzed dipeptidyl peptidase substrate, suggesting that ruminal peptidase activity was predominantly of a type I specificity.  相似文献   

11.
Comparative histochemical and biochemical studies on the catalytically active protease Dipeptidyl peptidase IV (DPPIV), have been performed in the rabbit cornea and the tear fluid using a sensitive fluorogenic substrate, Gly-Pro-7-amino-4-Trifluoromethyl Coumarine (AFC). In both normal and experimentally injured corneas, DPPIV activity was detected histochemically and in the tear fluid biochemically. In contrast to the normal cornea where DPPIV activity was absent and in the tear fluid where it was low, during continuous wearing of contact lenses or repeated irradiation of the cornea with UVB rays, slight DPPIV activity appeared first in the superficial layers of the corneal epithelium, while later increased activity was present in the whole epithelium. This paralleled elevated DPPIV activity in the tear fluid. Moreover, during continuous contact lens wear, the increased DPPIV activity in the tear fluid was, in many cases, coincidental with the presence of capillaries in the limbal part of the corneal stroma. After severe alkali burns when corneal ulcers appeared, collagen fragments were active for DPPIV, which was associated with high DPPIV activity in the tear fluid. In conclusion, Gly-Pro-AFC was found to be useful for comparative histochemical and biochemical studies on DPPIV activity in the experimentally injured rabbit eye. Using the method of the tear film collection by a short touch of substrate punches to the respective site of the cornea or conjunctiva we can show that in experimental injuries (wearing of contact lenses, irradiation of the cornea with UVB rays), the damaged corneal cells were the main source for DPPIV activity in the tear fluid. It is suggested that the activity of DPPIV measured in the tear fluid might serve as an indicator of early corneal disorders, e.g. corneal vascularization related to contact lens wear.  相似文献   

12.
A new fluorogenic substrate for the pyridoxal 5'-phosphate-dependent enzyme tryptophanase is described. L-Serine, which is linked to 7-amino-4-methylcoumarin through an O-carbamoyl tether, serves as a substrate for the enzyme. The released moiety, 7-amino-4-methylcoumarin (AMC), can be detected by either absorbance (355 nm) or fluorescence (excitation 365 nm/emission 440 nm). Kinetic constants were measured using each of these techniques: Km = 85 +/- 20 microM, Vmax = 2.9 +/- 0.4 mumol/min/mg (fluorescence) and Km = 129 +/- 21 microM, Vmax = 3.1 +/- 0.3 mumol/min/mg (absorbance). The Vmax for serine-AMC-carbamate is approximately 1.9 times faster than that of the natural substrate, tryptophan. Using fluorescence detection, solutions containing 10(-3) units of activity could be routinely assayed.  相似文献   

13.
CD26/DPPIV is a cell surface glycoprotein that functions both in signal transduction and as a proteolytic enzyme, dipeptidyl peptidase IV (DPPIV). To investigate how two separate functions of one molecule are regulated, we analyzed CD26 protein expression and DPPIV enzyme activity on living human T-helper 1 (Th1) and Th2 cells that express different levels of CD26/DPPIV. DPPIV activity was specifically determined with the synthetic fluorogenic substrate ala-pro-cresyl violet and CD26 protein expression was demonstrated with an FITC-conjugated CD26-specific antibody. Fluorescence of liberated cresyl violet (red) and FITC (green) was detected simultaneously on living T-cells using flow cytometry and spectrofluorometry. Th1 cells expressed three- to sixfold more CD26 protein than Th2 cells. The signal transduction function of the CD26/DPPIV complex, tested by measuring its co-stimulatory potential for proliferation, was directly related to the amount of CD26 protein at the cell surface. However, DPPIV activity was similar in both cell populations at physiological substrate concentrations because of differences in K(m) and V(max) values of DPPIV on Th1 and Th2 cells. Western blotting and zymography of Th1 and Th2 whole-cell lysates demonstrated similar patterns. This study shows that two functions of one molecule can be controlled differentially.  相似文献   

14.
Tachykinin-related peptides (TRP) are widely distributed in the CNS of insects, where they are likely to function as transmitters/modulators. Metabolic inactivation by membrane ecto-peptidases is one mechanism by which peptide signalling is terminated in the CNS. Using locustatachykinin-1 (LomTK-1, GPSGFYGVRamide) as a substrate and several selective peptidase inhibitors, we have compared the types of membrane associated peptidases present in the CNS of four insects, Locusta migratoria, Leucophaea maderae, Drosophila melanogaster and Lacanobia oleracea. A neprilysin (NEP)-like activity cleaving the G-F peptide bond was the major LomTK-1-degrading peptidase detected in locust brain membranes. NEP activity was also found in Leucophaea brain membranes, but the major peptidase was an angiotensin converting enzyme (ACE), cleaving the G-V peptide bond. Drosophila adult head and larval neuronal membranes cleaved the G-F and G-V peptide bonds. Phosphoramidon inhibited both these cleavages, but with markedly different potencies, indicating the presence in the fly brain of two NEP-like enzymes with different substrate and inhibitor specificity. In Drosophila, membrane ACE did not make a significant contribution to the cleavage of the G-V bond. In contrast, ACE was an important membrane peptidase in Lacanobia brain, whereas very little neuronal NEP could be detected. A dipeptidyl peptidase IV (DPP IV) that removed the GP dipeptide from the N-terminus of LomTK-1 was also found in Lacanobia neuronal membranes. This peptidase was a minor contributor to LomTK-1 metabolism by neuronal membranes from all four insect species. In Lacanobia, LomTK-1 was also a substrate for a deamidase that converted LomTK-1 to the free acid form. However, the deamidase was not an integral membrane protein and could be a lysosomal contaminant. It appears that insects from different orders can have different complements of neuropeptide-degrading enzymes. NEP, ACE and the deamidase are likely to be more efficient than the common DPP IV activity at terminating neuropeptide signalling since they cleave close to the C-terminus of the tachykinin, a region essential for maintaining biological activity.  相似文献   

15.
Determination of the sensitivity of influenza viruses to neuraminidase (NA) inhibitors is presently based on assays of NA function because, unlike available cell culture methods, the results of such assays are predictive of susceptibility in vivo. At present the most widely used substrate in assays of NA function is the fluorogenic reagent 2'-O-(4-methylumbelliferyl)-N-acetylneuraminic acid (MUN). A rapid assay with improved sensitivity is required because a proportion of clinical isolates has insufficient NA to be detectable in the current fluorogenic assay, and because some mutations associated with resistance to NA inhibitors reduce the activity of the enzyme. A chemiluminescence-based assay of NA activity has been developed that uses a 1,2-dioxetane derivative of sialic acid (NA-STAR) as the substrate. When compared with the fluorogenic assay, use of the NA-STAR substrate results in a 67-fold reduction in the limit of detection of the NA assay, from 200 pM (11 fmol) NA to 3 pM (0.16 fmol) NA. A panel of isolates from phase 2 clinical studies of zanamivir, which were undetectable in the fluorogenic assay, was tested for activity using the NA-STAR substrate. Of these 12 isolates with undetectable NA activity, 10 (83%) were found to have detectable NA activity using the NA-STAR substrate. A comparison of sensitivity to zanamivir of a panel of influenza A and B viruses using the two NA assay methods has been performed. IC(50) values for zanamivir using the NA-STAR were in the range 1.0-7.5 nM and those for the fluorogenic assay in the range 1. 0-5.7 nM (n = 6). The NA-STAR assay is a highly sensitive, rapid assay of influenza virus NA activity that is applicable to monitoring the susceptibility of influenza virus clinical isolates to NA inhibitors.  相似文献   

16.
A fluorometric assay for acetylcholinesterase inhibitory activity was developed in a flow system using the fluorogenic substrate 7-acetoxy-1-methyl quinolinium iodide which is hydrolysed to the highly fluorescent 7-hydroxy-1-methyl quinolinium iodide. The detection limit of galanthamine is 0.5 microM, which is about 20 times more sensitive than in the colorimetric flow assay. In the presence of 30% methanol or of 5% acetonitrile, about 70% of the enzyme activity could still be detected. Various plant extracts have been screened using the described system including bulbs of Galanthus nivalis, Eucharis amazonica (E. x grandiflora), Crinum powelli and Nerine bowdenii (all members of the Amaryllidaceae), which showed strong AchE inhibitory activity.  相似文献   

17.
A gene encoding thermostable Lon protease from Brevibacillus thermoruber WR-249 was cloned and characterized. The Br. thermoruber Lon gene (Bt-lon) encodes an 88 kDa protein characterized by an N-terminal domain, a central ATPase domain which includes an SSD (sensor- and substrate-discrimination) domain, and a C-terminal protease domain. The Bt-lon is a heat-inducible gene and may be controlled under a putative Bacillus subtilis sigmaA-dependent promoter, but in the absence of CIRCE (controlling inverted repeat of chaperone expression). Bt-lon was expressed in Escherichia coli, and its protein product was purified. The native recombinant Br. thermoruber Lon protease (Bt-Lon) displayed a hexameric structure. The optimal temperature of ATPase activity for Bt-Lon was 70 degrees C, and the optimal temperature of peptidase and DNA-binding activities was 50 degrees C. This implies that the functions of Lon protease in thermophilic bacteria may be switched, depending on temperature, to regulate their physiological needs. The peptidase activity of Bt-Lon increases substantially in the presence of ATP. Furthermore, the substrate specificity of Bt-Lon is different from that of E. coli Lon in using fluorogenic peptides as substrates. Notably, the Bt-Lon protein shows chaperone-like activity by preventing aggregation of denatured insulin B-chain in a dose-dependent and ATP-independent manner. In thermal denaturation experiments, Bt-Lon was found to display an indicator of thermostability value, Tm of 71.5 degrees C. Sequence comparison with mesophilic Lon proteases shows differences in the rigidity, electrostatic interactions, and hydrogen bonding of Bt-Lon relevant to thermostability.  相似文献   

18.
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria and serves as a potential target for the development of novel antibacterial agents due to its unique physiological and biochemical properties. In this paper, we describe a novel fluorogenic substrate, KLTFGTVK(Abz)PVQAIAGY(NO2)EWL, in which 2-aminobenzoic acid (Abz) and 3-nitrotyrosine (Y(NO2)) were used as the fluorescent donor and acceptor, respectively. The substrate can be cleaved by both Streptococcus pneumoniae and Escherichia coli SPase I. Upon cleavage of the fluorogenic substrate by SPase I, the fluorescent intensity increases and can be monitored continuously by spectrofluorometer. Kinetic analysis with S. pneumoniae SPase I demonstrated that the K(m) value for the substrate is 118.1 microM, and the k(cat) value is 0.032 s(-1). Mass spectrometric analysis and peptide sequencing of the two cleaved products confirmed that the cleavage occurs specifically at the predicted site. More interestingly, the positively charged lysine in the N-terminus of the substrate was demonstrated to be important for effective cleavage. Phospholipids were found to stimulate the cleavage reaction. This stimulation by phospholipids is dependent upon the N-terminal charge of the substrate, indicating that the interaction of the positively charged substrate with anionic phospholipids is important for maintaining the substrate in certain conformation for cleavage. The substrate and assay described here can be readily automated and utilized for the identification of potential antibacterial agents.  相似文献   

19.
Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.  相似文献   

20.
A quantitative assay of beta-galactosidase activity in single cells of Saccharomyces cerevisiae has been developed using a fluorogenic substrate and flow cytometry [reported in Wittrup & Bailey, Cytometry, 9,394 (1988)]. The beta-galactosidase activity is expressed in yeast from the Escherichia coli lacZ gene under the control of the yeast GAL10 promoter, and is used as a marker for multicopy plasmid content. A nonfluorescent fluorogenic substrate is enzymatically cleaved by intracellular beta-galactosidase to form a fluorescent product. The accumulation of fluorescent product in single cells was found to depend on bulk substrate concentration and single-cell enzyme activity in a fashion that could not be described by a Michaelis-Menten kinetic rate form. It has been demonstrated that diffusion limitation rather than enzyme activity can determine the level of single-cell fluorescence under certain assay conditions, and a mathematical model has; been formulated which accounts for substrate and product diffusion. Guided by the mathematical model, the assay conditions were modified to allow measurement of single-cell enzyme activity rather than diffusion rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号