首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
J Zhang  R Cao  Y Zhang  T Jia  Y Cao  E Wahlberg 《FASEB journal》2009,23(1):153-163
Preclinical and clinical evaluations of individual proangiogenic/arteriogenic factors for the treatment of ischemic myocardium and skeletal muscle have produced unfulfilled promises. The establishment of functional and stable arterial vascular networks may require combinations of different angiogenic and arteriogenic factors. Using in vivo angiogenesis and ischemic hind-limb animal models, we have compared the angiogenic and therapeutic activities of fibroblast growth factor 2 (FGF-2) in combinations with PDGF-AA and PDGF-AB, two members of the platelet-derived growth factor (PDGF) family, with distinct receptor binding patterns. We show that both PDGF-AA/FGF-2 and PDGF-AB/FGF-2 in combinations synergistically induce angiogenesis in the mouse cornea. FGF-2 up-regulates PDGFR-alpha and -beta expression levels in the newly formed blood vessels. Interestingly, PDGF-AB/FGF-2, but not PDGF-AA/FGF-2, is able to stabilize the newly formed vasculature by recruiting pericytes, and an anti-PDGFR-beta neutralizing antibody significantly blocks PDGF-AB/FGF-2-induced vessel stability. These findings demonstrate that PDGFR-beta receptor is essential for vascular stability. Similarly, PDGF-AB/FGF-2 significantly induces stable collateral growth in the rat ischemic hind limb. The high number of collaterals induced by PDGF-AB/FGF-2 leads to dramatic improvement of the paw's skin perfusion. Immunohistochemical analysis of the treated skeletal muscles confirms that a combination of PDGF-AB and FGF-2 significantly induces arteriogenesis in the ischemic tissue. A combination of PDGF-AB and FGF-2 would be optimal proangiogenic agents for the treatment of ischemic diseases.  相似文献   

2.
Estrogen increases proliferation and migration of cultured endothelial cells and perfusion of ischemic hindlimbs of rabbits. We tested the hypothesis that estrogen is angiogenic and arteriogenic in the heart during progressive coronary occlusion. Ovariectomized (OVX) and 17beta-estradiol (1 mg.kg(-1).wk(-1) im)-treated OVX (OVX-ES) female New Zealand White rabbits were instrumented with an ameroid occluder on a proximal coronary artery. Four weeks after implantation of an ameroid occluder, we measured myocardial perfusion with microspheres at rest and during adenosine-induced maximal vasodilation. The heart was fixed by perfusion at physiological pressure, and capillary angiogenesis and remodeling were assessed by image analysis of tissue sections in collateral-dependent myocardium. Coronary conductance was higher at rest and during maximal vasodilation in collateral-dependent myocardium of OVX-ES than OVX rabbits. Estrogen treatment increased the wall-to-lumen ratio of collateral vessels while it decreased the wall-to-lumen ratio of noncollateral arteries in normal regions. In normal and collateral-dependent myocardium, mean capillary diameter and capillary volume density were greater in OVX-ES rabbits. However, estrogen had no effect on capillary length density in either region of the myocardium. These data suggest that estrogen induces remodeling of the collateral vasculature and may stimulate growth of the resistance vessels, thereby providing protection during development of a gradual coronary occlusion.  相似文献   

3.
Mice lacking both connexin37 (Cx37) and connexin40 (Cx40), gap junction proteins expressed in vascular endothelium, die perinatally with pronounced vascular abnormalities. Early vasculogenesis proceeds normally, but by E18.5 Cx37(-/-)Cx40(-/-) animals display vessel dilatation and congestion as well as localized hemorrhages in skin, testis, intestines, and lungs. Abnormal vascular channels are present in the testis, often forming cavernous hemangioma-like defects. Unusually large, distended vessels are also present in the submucosa and lamina propria of the intestine. Ablation of Cx40 has a greater effect on endothelial dye-transfer than ablation of Cx37, and the effect of Cx40 ablation is age-dependent. Only in embryonic aortas lacking both Cx37 and Cx40 is there a complete loss of endothelial coupling. Surprisingly, elimination of Cx40 results in a large drop in aortic endothelial Cx37 on western blots, and deletion of Cx37 also reduces endothelial Cx40 levels. In contrast, in the medial layer, both Cx37 and Cx43 increase when Cx40 is ablated. These studies indicate that Cx37 and Cx40 are collectively critical for endothelial communication and provide evidence of an important role for gap junctions in vascular development. In addition, Cx37 and Cx40 appear to be mutually dependent on each other for normal expression in vascular endothelium.  相似文献   

4.
心脏血管的形成   总被引:1,自引:0,他引:1  
心脏的血 管 形成 是 血管 发生 (vasculogenesis)、血 管 生成 (angiogenesis)及 动 脉生 成 (arteriogenesis)三种 机制 共同 作 用的 结 果 .血管 发 生是 指在 胚 胎期 ,来 源 于中 胚 层的 干细 胞增 殖 和分 化 ,形 成 内皮 细胞 ,进而 与其 他细 胞形 成 原始 的 心血 管系 统 .血 管生 成 出现 在血 管 发生 之后 ,是指 通过 内 皮细 胞的 增 殖由 原始 血 管丛 或已 存在 的血 管 形成 无 完好 血管 的 膜中 的毛 细 血管 .而 动 脉生 成是 指 具有 完好 的 动脉 中膜 的 小动 脉 的生 成,也包 括原 有的 侧 支循 环 的改 建及 成 熟 .总结 了 出生 前后 心 脏脉 管系 统 形成 的细 胞 及分 子机 理 ,并 从生 物 学及 临床 治疗 上就 一 些内 皮 前体 细胞 及 其它 脉管 起 源相 关问 题 进行 简单 的 介绍 .  相似文献   

5.
BACKGROUND: Acidic fibroblast growth factor (FGF-1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF-1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology. METHODS: In order to assess the potency of FGF-1 gene transfer for therapeutic angiogenesis in ischemic skeletal muscles displaying decreased gene expression levels and sustained impaired formation of collateral vessels and arterioles, we developed a model of PAD in hamsters with a background of hypercholesterolemia. Hamsters fed a cholesterol-rich diet and subjected to hindlimb ischemia exhibit a sustained impaired angiogenic response, as evidenced by decreased angiographic score and histological quantification of arterioles in the ischemic muscles. RESULTS: In this model, we demonstrate that NV1FGF (a human FGF-1 expression plasmid), given intramuscularly 14 days after induction of hindlimb ischemia, promoted the formation of both collateral vessels and arterioles 14 days after treatment (i.e. 28 days post-ischemia). CONCLUSIONS: Our data provide evidence that NV1FGF can reverse the cholesterol-induced impairment of revascularization in a hamster model of hindlimb ischemia by promoting the growth of both collateral vessels and arterioles in ischemic muscles exhibiting significantly decreased levels of gene expression compared with control muscles. Therefore, this study underscores the relevance of NV1FGF gene therapy to overcome perfusion defects in patients with PAD.  相似文献   

6.
Blood flow restoration to ischemic tissue is affected by various risk factors. The aim of this study was to examine gender effects on arteriogenesis and angiogenesis in a mouse ischemic hindlimb model. C57BL/6J mice were subjected to unilateral hindlimb ischemia. Flow recovery was less and hindlimb use impairment was greater in females. No gender difference in vessel number was found at baseline, although 7 days postsurgery females had fewer α-smooth muscle actin-positive vessels in the midpoint of the adductor region. Females had higher hindlimb vascular resistance, were less responsive to vasodilators, and were more sensitive to vasoconstrictors postligation. Western blotting showed that females had higher baseline levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in the calf, while 7 days postligation males had higher levels of VEGF, eNOS, and phosphorylated vasodilator stimulated phosphoprotein. Females had less angiogenesis in a Matrigel plug assay and less endothelial cell proliferation in vitro. Females have impaired recovery of flow, a finding presumably caused by multiple factors including decreased collateral remodeling, less angiogenesis, impaired vasodilator response, and increased vasoconstrictor activity; our results also suggest the possibility that new collateral formation, from capillaries, is impaired in females.  相似文献   

7.
Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury. Here we report the 1H, 15N, and 13C resonance assignments for an important regulatory domain of Cx37, the carboxyl terminus (CT; C233-V333). The predicted secondary structure of the Cx37CT domain based on the chemical shifts is that of an intrinsically disordered protein. In the 1H–15N HSQC, N-terminal residues S254-Y259 displayed a second weaker peak and residues E261-Y266 had significant line broadening. These residues are flanked by prolines (P250, P258, P260, and P268), suggesting proline cis–trans isomerization. Overall, these assignments will be useful for identifying the binding sites for intra- and inter-molecular interactions that affect Cx37 channel activity.  相似文献   

8.
We hypothesize that diabetes-induced impaired collateral formation after a hindlimb ligation in rats is in part caused by intracellular glycation and that overexpression of glyoxalase-I (GLO-I), i.e. the major detoxifying enzyme for advanced-glycation-endproduct (AGE) precursors, can prevent this. Wild-type and GLO-I transgenic rats with or without diabetes (induced by 55 mg/kg streptozotocin) were subjected to ligation of the right femoral artery. Laser Doppler perfusion imaging showed a significantly decreased blood perfusion recovery after 6 days in the diabetic animals compared with control animals, without any effect of Glo1 overexpression. In vivo time-of-flight magnetic resonance angiography at 7-Tesla showed a significant decrease in the number and volume of collaterals in the wild-type diabetic animals compared with the control animals. Glo1 overexpression partially prevented this decrease in the diabetic animals. Diabetes-induced impairment of arteriogenic adaptation can be partially rescued by overexpressing of GLO-I, indicating a role of AGEs in diabetes-induced impaired collateral formation.  相似文献   

9.
Bone marrow (BM)-derived stem/progenitor cells play an important role in ischemia-induced angiogenesis in cardiovascular diseases. Heat shock factor 1 (HSF1) is known to be induced in response to hypoxia and ischemia. We examined whether HSF1 contributes to ischemia-induced angiogenesis through the mobilization and recruitment of BM-derived stem/progenitor cells using HSF1-knockout (KO) mice. After the induction of ischemia, blood flow and microvessel density in the ischemic hindlimb were significantly lower in the HSF1-KO mice than in the wild-type (WT) mice. The mobilization of BM-derived Sca-1- and c-kit-positive cells in peripheral blood after ischemia was significantly lower in the HSF1-KO mice than in the WT mice. BM stem/progenitor cells from HSF1-KO mice showed a significant decrease in their recruitment to ischemic tissue and in migration, adhesion, and survival when compared with WT mice. Blood flow recovery in the ischemic hindlimb significantly decreased in WT mice receiving BM reconstitution with donor cells from HSF1-KO mice. Conversely, blood flow recovery in the ischemic hindlimb significantly increased in HSF1-KO mice receiving BM reconstitution with donor cells from WT mice. These findings suggest that HSF1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of BM-derived stem/progenitor cells.  相似文献   

10.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

11.
Shyu KG  Chang H  Isner JM 《Life sciences》2003,73(5):563-579
Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) are essential for vascular integrity and development. The purpose of the study was to test the hypothesis that Ang1 will promote angiogenic response to VEGF in the spontaneous Watanabe heritable hypercholesterolemic (WHHL) rabbit model of acute hindlimb ischemia. Immediately after the ligation of the external iliac artery and the excision of the common and superficial femoral artery in one female WHHL rabbit, 250 microg of phVEGF(165) (n = 8), 500 microg of pAng1* (n = 8), or 250 microg of phVEGF(165) plus 500 microg of pAng1* (n = 8) was injected intramuscularly into the ischemic hindlimb muscles. Gross appearance of ischemic limb, collateral vessel formation and limb perfusion were assessed 30 days after treatment. The incidence of ischemic limb necrosis was higher in the animals treated by phVEGF(165) or by pAng1* than in those treated by phVEGF(165) plus pAng1* (100%, 75% and 14.3%, respectively; P = 0.002). Animals in the combination therapy group had a significantly higher calf blood pressure ratio at day 30 (VEGF plus Ang1* = 0.84 +/- 0.06; VEGF = 0.54 +/- 0.01; Ang1* = 0.59 +/- 0.05; P < 0.01). A combination therapy of VEGF plus Ang*1 had a significantly higher (P < 0.01) angiographic score than either therapy alone. Capillary density (P < 0.05) and capillary/muscle fiber ratio (P < 0.01) of the combination therapy group were also significantly higher than that of either therapy alone. In conclusion, Ang1 can potentiate the angiogenic response to VEGF in the hyperlipidemic rabbit model of acute hindlimb ischemia. Intramuscular administration of cytokines on revascularization of the ischemic hindlimb model of hyperlipidemic rabbit is feasible.  相似文献   

12.
Endothelial cell-selective adhesion molecule (ESAM) is a member of the immunoglobulin receptor family that mediates homophilic interactions between endothelial cells. To address potential in vivo angiogenic functions of this molecule, mice lacking ESAM (ESAM-/-) were generated by gene-targeted deletion. ESAM-/- mice did not show overt morphological defects in the vasculature. To evaluate the role of ESAM in pathological angiogenesis, wild type (WT) and ESAM-/- mice were injected with melanoma and Lewis lung carcinoma cells. By 14 days after injection, tumor volumes of B16F10 and LL/2 in ESAM-/- mice were 48 and 37% smaller, respectively, compared with WT mice. Vascular density of the tumors, as determined by CD31 staining, was also decreased in the ESAM null animals. Matrigel plug assays showed less neovascularization in ESAM-/- mice than in WT mice. ESAM-/- endothelial cells exhibited less in vitro tube formation and decreased migration in response to basic fibroblast growth factor when compared with WT cells, and endothelial-like yolk sac cells engineered to overexpress ESAM showed accelerated tube formation in vitro. These in vitro and in vivo studies suggest that ESAM has a redundant functional role in physiological angiogenesis but serves a unique and essential role in pathological angiogenic processes such as tumor growth.  相似文献   

13.
ABSTRACT: BACKGROUND: Far infra-red (IFR) therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC) and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process.Materials and methodsStarting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ)-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group). The latter mice were placed in an IFR dry sauna at 34[DEGREE SIGN]C for 30 min once per day for 5 weeks. RESULTS: Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+) mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group). However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. CONCLUSIONS: Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced diabetic mice, and these beneficial effects may derive from enhancement of EPC functions and homing process.  相似文献   

14.
Mice lacking both connexin37 (Cx37) and connexin40 (Cx40), gap junction proteins expressed in vascular endothelium, die perinatally with pronounced vascular abnormalities. Early vasculogenesis proceeds normally, but by E18.5 Cx37?/?Cx40?/?animals display vessel dilatation and congestion as well as localized hemorrhages in skin, testis, intestines, and lungs. Abnormal vascular channels are present in the testis, often forming cavernous hemangioma-like defects. Unusually large, distended vessels are also present in the submucosa and lamina propria of the intestine. Ablation of Cx40 has a greater effect on endothelial dye-transfer than ablation of Cx37, and the effect of Cx40 ablation is age-dependent. Only in embryonic aortas lacking both Cx37 and Cx40 is there a complete loss of endothelial coupling. Surprisingly, elimination of Cx40 results in a large drop in aortic endothelial Cx37 on western blots, and deletion of Cx37 also reduces endothelial Cx40 levels. In contrast, in the medial layer, both Cx37 and Cx43 increase when Cx40 is ablated. These studies indicate that Cx37 and Cx40 are collectively critical for endothelial communication and provide evidence of an important role for gap junctions in vascular development. In addition, Cx37 and Cx40 appear to be mutually dependent on each other for normal expression in vascular endothelium.  相似文献   

15.
Arteriogenesis, the growth of natural bypass arteries, is triggered by hemodynamic forces within vessels and requires a balanced inflammatory response, involving induction of the chemokine MCP-1 and recruitment of leukocytes. However, little is known how these processes are coordinated. The MAP-kinase-activated-proteinkinase-2 (MK2) is a critical regulator of inflammatory processes and might represent an important link between cytokine production and cell recruitment during postnatal arteriogenesis. Therefore, the present study investigated the functional role of MK2 during postnatal arteriogenesis. In a mouse model of hindlimb ischemia (HLI) MK2-deficiency (MK2KO) significantly impaired ischemic blood flow recovery and growth of collateral arteries as well as perivascular recruitment of mononuclear cells and macrophages. This was accompanied by induction of endothelial MCP-1 expression in wildtype (WT) but not in MK2KO collateral arteries. Following HLI, MK2 activation rapidly occured in the endothelium of growing WT arteries in vivo. In vitro, inflammatory cytokines and cyclic stretch activated MK2 in endothelial cells, which was required for stretch- and cytokine-induced release of MCP-1. In addition, a monocyte cell autonomous function of MK2 was uncovered potentially regulating MCP-1-dependent monocyte recruitment to vessels: MCP-1 stimulation of WT monocytes induced MK2 activation and monocyte migration in vitro. The latter was reduced in MK2KO monocytes, while in vivo MK2 was activated in monocytes recruited to collateral arteries. In conclusion, MK2 regulates postnatal arteriogenesis by controlling vascular recruitment of monocytes/macrophages in a dual manner: regulation of endothelial MCP-1 expression in response to hemodynamic and inflammatory forces as well as MCP-1 dependent monocyte migration.  相似文献   

16.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

17.
Cells within the vascular wall are coupled by gap junctions, allowing for direct intercellular transfer of low molecular weight molecules. Although gap junctions are believed to be important for vascular development and function, their precise roles are not well understood. Mice lacking either connexin37 (Cx37) or connexin40 (Cx40), the predominant gap junction proteins present in vascular endothelium, are viable and exhibit phenotypes that are largely non-blood vessel related. Since Cx37 and Cx40 are coexpressed in endothelial cells and could overlap functionally, some roles of junctional communication may only be revealed by the elimination of both connexins. In this study, we interbreed Cx37 and Cx40 knockout mice to generate Cx37-/- Cx40-/- animals and show that they display severe vascular abnormalities and die perinatally. Cx37-/- Cx40-/- animals exhibit localized hemorrhages in skin, testis, gastrointestinal tissues, and lungs, with pronounced blood vessel dilatation and congestion occurring in some areas. Vascular anomalies were particularly striking in testis and intestine. In testis, abnormal vascular channels were present, with these channels coalescing into a cavernous, endothelium-lined blood pool resembling a hemangioma. These results provide evidence of a critical role for endothelial gap junction-mediated communication in the development and/or functional maintenance of segments of the mouse vasculature.  相似文献   

18.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

19.
Defective vascular development in connexin 45-deficient mice   总被引:14,自引:0,他引:14  
In order to reveal the biological function(s) of the gap-junction protein connexin 45 (Cx45), we generated Cx45-deficient mice with targeted replacement of the Cx45-coding region with the lacZ reporter gene. Heterozygous Cx45(+/)(-) mice showed strong expression of the reporter gene in vascular and visceral smooth muscle cells. Cx45-deficient embryos exhibited striking abnormalities in vascular development and died between embryonic day (E) 9.5 and 10.5. Differentiation and positioning of endothelial cells appeared to be normal, but subsequent development of blood vessels revealed impaired formation of vascular trees in the yolk sac, impaired allantoic mesenchymal ingrowth and capillary formation in the labyrinthine part of the placenta, and arrest of arterial growth, including a failure to develop a smooth muscle layer surrounding the major arteries of the embryo proper. As a consequence, the hearts of most Cx45-deficient embryos were dilated. The abnormal development of the vasculature in the yolk sac of Cx45(-)(/)(-) embryos could be caused by defective TGFbeta signalling, as the amount of TGF beta1 protein in the epithelial layer of the yolk sac was largely decreased in the E9.5 Cx45(-)(/)(-) embryo, compared with the wild-type embryo. The defective vascular development was accompanied by massive apoptosis, which began in some embryos at E8.5 and was abundant in virtually all tissues of the embryos at E9.5. We conclude that in Cx45(-)(/)(-) embryos, vasculogenesis was normal, but subsequent transformation into mature vessels was interrupted. Development of different types of vessels was impaired to a varying extent, which possibly reflects the complementation by other connexin(s).  相似文献   

20.
The objectives of this study were to assess the time course of enlargement and gene expression of a collateral vessel that enlarges following occlusion of the femoral artery and to relate these responses to the increases in collateral-dependent blood flow to the calf muscles in vivo. We employed exercise training to stimulate collateral vessel development. Rats were exercise trained or kept sedentary for various times of up to 25 days postbilateral occlusion (n=approximately 9/time point). Collateral blood flow to the calf muscles, determined with microspheres, increased modestly over the first few days to approximately 40 ml.min(-1).100 g(-1) in sedentary animals; the increase continued over time to approximately 80 ml.min(-1).100 g(-1) in the trained animals. Diameters of the isolated collateral vessels increased progressively over time, whereas an increased vessel compliance observed at low pressures was similar across time. These responses were greater in the trained animals. The time course of upregulation of vascular endothelial growth factor and placental growth factor, and particularly endothelial nitric oxide synthase and fms-like tyrosine kinase 1, mRNAs in the isolated collateral vessel implicates these factors as integral to the arteriogenic process. Collateral vessel enlargement and increased compliance at low pressures contribute to the enlarged circuit available for collateral blood flow. However, modulation of the functioning collateral vessel diameter, by smooth muscle tone, must occur to account for the observed increases in collateral blood flow measured in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号