首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regular physical activity is associated with a reduced risk of coronary heart disease, as it probably modifies the balance between free-radical generation and antioxidant activity. On the other hand, however, acute physical activity increases oxygen uptake and leads to a temporary imbalance between the production of reactive oxygen and nitrogen species (RONS) and their disposal: this phenomenon is called oxidative stress. Proteins are one of the most important oxidation targets during physical exercise and carbonylation is one of the most common oxidative protein modifications. In cells there is a physiological level of oxidized proteins that doesn't interfere with cell function; however, an increase in oxidized protein levels may cause a series of cellular malfunctions that could lead to a disease state. For this reason the quantification of protein oxidation is important to distinguish a healthy state from a disease state. Several studies have demonstrated an increase of carbonylated plasma proteins in athletes after exercise, but none have identified targets of this oxidation. Recently a process of protein decarbonylation has been discovered, this may indicate that carbonylation could be involved in signal transduction. The aim of our research was to characterize plasma protein carbonylation in response to physical exercise in trained male endurance athletes. We analyzed by proteomic approach their plasma proteins at resting condition and after two different kinds of physical exercise (PE). We used 2D-GE followed by western blot with specific antibodies against carbonylated proteins. The 2D analysis identified Haptoglobin as potential protein target of carbonylation after PE. We also identified Serotransferrin and Fibrinogen whose carbonylation is reduced after exercise. These methods have allowed us to obtain an overview of plasma protein oxidation after physical exercise.  相似文献   

2.
Protein carbonylation is a well-documented and quantifiable consequence of oxidative stress in several neuropathologies, including multiple sclerosis, Alzheimer׳s disease, and Parkinson׳s disease. Although oxidative stress is a hallmark of traumatic brain injury (TBI), little work has explored the specific neural regions and cell types in which protein carbonylation occurs. Furthermore, the effect of gender on protein carbonylation after TBI has not been studied. The present investigation was designed to determine the regional and cell specificity of TBI-induced protein carbonylation and how this response to injury is affected by gender. Immunohistochemistry was used to visualize protein carbonylation in the brains of adult male and female Sprague–Dawley rats subjected to controlled cortical impact (CCI) as an injury model of TBI. Cell-specific markers were used to colocalize the presence of carbonylated proteins in specific cell types, including astrocytes, neurons, microglia, and oligodendrocytes. Results also indicated that the injury lesion site, ventral portion of the dorsal third ventricle, and ventricular lining above the median eminence showed dramatic increases in protein carbonylation after injury. Specifically, astrocytes and limited regions of ependymal cells adjacent to the dorsal third ventricle and the median eminence were most susceptible to postinjury protein carbonylation. However, these patterns of differential susceptibility to protein carbonylation were gender dependent, with males showing significantly greater protein carbonylation at sites distant from the lesion. Proteomic analyses were also conducted and determined that the proteins most affected by carbonylation in response to TBI include glial fibrillary acidic protein, dihydropyrimidase-related protein 2, fructose-bisphosphate aldolase C, and fructose-bisphosphate aldolase A. Many other proteins, however, were not carbonylated by CCI. These findings indicate that there is both regional and protein specificity in protein carbonylation after TBI. The marked increase in carbonylation seen in ependymal layers distant from the lesion suggests a mechanism involving the transmission of a cerebral spinal fluid-borne factor to these sites. Furthermore, this process is affected by gender, suggesting that hormonal mechanisms may serve a protective role against oxidative stress.  相似文献   

3.
Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified. Among them, protein spots identified as peroxiredoxins 1 and 6, glyceraldehyde-3-phosphate dehydrogenase, and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways were focused on two distinct proteins: p53 for altered protein expression and huntingtin for increased protein carbonylation. This study emphasizes the importance of performing analysis addressing different aspects of the cellular proteome to have a more accurate view of their changes upon stress.  相似文献   

4.
The purpose of this study was to determine (1) whether oxidative damage to plasma proteins in mice and rats, accrued during aging and manifested as carbonyl modifications, was selective or random, and (2) whether the putative carbonylated proteins could be used as markers of oxidative stress and aging. The total protein carbonyl content of the plasma significantly increased with age in mice but not in rats. Immunostaining of mouse plasma proteins, resolved by SDS-PAGE to localize carbonyls, revealed that only two specific proteins exhibited an age-associated increase in carbonylation. These proteins with molecular weights of 68 and 75 kDa, were identified as albumin and transferrin, respectively. In the rat, albumin and a 167-kDa protein, alpha1-macroglobulin (alpha-1M), showed significant age-dependent accrual of carbonylation. In the plasma of middle age Rhesus monkeys, in addition to albumin, a 54-kDa protein showed carbonylation. However, neither transferrin nor alpha-1M were carbonylated in the plasma of Rhesus monkey. Albumin was the only protein that showed carbonylation in all the three species examined. Results of this study indicate that age-associated increase in protein carbonylation is a selective and not a random phenomenon. However, the set of proteins that become carbonylated differs in different species.  相似文献   

5.
Treatment of breast cancer is complex and challenging due to the heterogeneity of the disease. To avoid significant toxicity and adverse side-effects of chemotherapy in patients who respond poorly, biomarkers predicting therapeutic response are essential. This study has utilized a proteomic approach integrating 2D-DIGE, LC-MS/MS, and bioinformatics to analyze the proteome of breast cancer (ZR-75-1 and MDA-MB-231) and breast epithelial (MCF-10A) cell lines induced to undergo apoptosis using a combination of doxorubicin and TRAIL administered in sequence (Dox-TRAIL). Apoptosis induction was confirmed using a caspase-3 activity assay. Comparative proteomic analysis between whole cell lysates of Dox-TRAIL and control samples revealed 56 differentially expressed spots (≥2-fold change and p < 0.05) common to at least two cell lines. Of these, 19 proteins were identified yielding 11 unique protein identities: CFL1, EIF5A, HNRNPK, KRT8, KRT18, LMNA, MYH9, NACA, RPLP0, RPLP2, and RAD23B. A subset of the identified proteins was validated by selected reaction monitoring (SRM) and Western blotting. Pathway analysis revealed that the differentially abundant proteins were associated with cell death, cellular organization, integrin-linked kinase signaling, and actin cytoskeleton signaling pathways. The 2D-DIGE analysis has yielded candidate biomarkers of response to treatment in breast cancer cell models. Their clinical utility will depend on validation using patient breast biopsies pre- and post-treatment with anticancer drugs.  相似文献   

6.
Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC fractionation of intact proteins. This simple LC-based workflow is an effective technique to reduce sample complexity, minimize technical variation, and enable simultaneous quantification of four samples. This method was used to determine protein oxidation in an iron accumulating mutant of Saccharomyces cerevisiae exposed to oxidative stress. Overall, 31 proteins were identified with 99% peptide confidence, and of those, 27 proteins were quantified. Most of the identified proteins were associated with energy metabolism (32.3%), and cellular defense, transport, and folding (38.7%), suggesting a drop in energy production and reducing power of the cells due to the damage of glycolytic enzymes and decrease in activity of enzymes involved in protein protection and regeneration. In addition, the oxidation sites of seven proteins were identified and their estimated position also indicated a potential impact on the enzymatic activities. Predicted 3D structures of peroxiredoxin (TSA1) and thioredoxin II (TRX2) revealed close proximity of all oxidized amino acid residues to the protein active sites.  相似文献   

7.
We have applied an in-depth quantitative proteomic approach, combining isotopic labeling extensive intact protein separation and mass spectrometry, for high confidence identification of protein changes in plasmas from a mouse model of breast cancer. We hypothesized that a wide spectrum of proteins may be up-regulated in plasma with tumor development and that comparisons with proteins expressed in human breast cancer cell lines may identify a subset of up-regulated proteins in common with proteins expressed in breast cancer cell lines that may represent candidate biomarkers for breast cancer. Plasma from PyMT transgenic tumor-bearing mice and matched controls were obtained at two time points during tumor growth. A total of 133 proteins were found to be increased by 1.5-fold or greater at one or both time points. A comparison of this set of proteins with published findings from proteomic analysis of human breast cancer cell lines yielded 49 proteins with increased levels in mouse plasma that were identified in breast cancer cell lines. Pathway analysis comparing the subset of up-regulated proteins known to be expressed in breast cancer cell lines with other up-regulated proteins indicated a cancer related function for the former and a host-response function for the latter. We conclude that integration of proteomic findings from mouse models of breast cancer and from human breast cancer cell lines may help identify a subset of proteins released by breast cancer cells into the circulation and that occur at increased levels in breast cancer.  相似文献   

8.
Mirzaei H  Baena B  Barbas C  Regnier F 《Proteomics》2008,8(7):1516-1527
The objective in much of the proteomics literature today is to establish the difference between healthy and disease states at the protein level using blood plasma. A critical component in this endeavor is to establish what is normal. The focus of the work reported here was to do this with oxidized proteins that might relate to oxidative stress and oxidative stress-related diseases. Oxidative stress is known to increase markedly in cancer, diabetes, heart disease, and neurodegenerative diseases. Since proteins are one of the targets of ROS, generated by oxidative stress, oxidized proteins are excellent biomarker candidates for these diseases. But first it is necessary to identify oxidized proteins that occur in the healthy state. Healthy rat plasma was used in this study as a source for the identification of naturally oxidized proteins. Freshly drawn blood was treated with biotin hydrazide to selectively derivatize carbonyl groups in oxidized proteins. Oxidized proteins thus biotinylated were separated from the other plasma proteins using avidin affinity chromatography. Affinity selected proteins were further fractionated on a C(8) RP column and fractions collected. The collected fractions were then tryptic digested and the peptides identified using a combination of LC/MS/MS and database searches. One hundred forty-six proteins were identified using 700 signature peptides from the tryptic digested chromatographic fractions. The most frequently encountered proteins in the samples were keratins. Brain and liver were among the organs contributing the most oxidized proteins to plasma followed by heart and kidney.  相似文献   

9.
Neoadjuvant chemotherapy is used to treat oestrogen receptor-positive breast cancer however chemo-resistance is a major obstacle in this molecular subtype. The ability to predict tumour response would allow chemotherapy administration to be directed towards patients who would most benefit, thus maximising treatment efficacy. We aimed to identify protein biomarkers associated with response to neoadjuvant chemotherapy, in a pilot study using comparative 2-DE MALDI TOF/TOF MS proteomic analysis of breast tumour samples. A total of 3 comparative proteomic experiments were performed, comparing protein expression between chemotherapy-sensitive and chemotherapy-resistant oestrogen receptor-positive invasive ductal carcinoma tissue samples. This identified a list of 132 unique proteins that were significantly differentially expressed (≥ 2 fold) in chemotherapy resistant samples, 57 of which were identified in at least two experiments. Ingenuity? Pathway Analysis was used to map the 57 DEPs onto canonical signalling pathways. We implicate several isoforms of 14-3-3 family proteins (theta/tau, gamma, epsilon, beta/alpha and zeta/delta), which have previously been associated with chemotherapy resistance in breast cancer. Extensive clinical validation is now required to fully assess the role of these proteins as putative markers of chemotherapy response in luminal breast cancer subtypes.  相似文献   

10.
Carbonylation is an irreversible and irreparable protein modification induced by oxidative stress. Cholangiocarcinoma (CCA) is associated with chronic inflammation caused by liver fluke infection. To investigate the relationship between protein carbonylation and CCA progression, carbonylated proteins were detected by 2D OxyBlot and identified by MALDI-TOF/TOF analyses in pooled CCA tissues in comparison to adjacent nontumor tissues and normal liver tissues. We identified 14 highly carbonylated proteins in CCA tissues. Immunoprecipitation and Western blot analyses of individual samples confirmed significantly greater carbonylation of serotransferrin, heat shock protein 70-kDa protein 1 (HSP70.1), and α1-antitrypsin (A1AT) in tumor tissues compared to normal tissues. The oxidative modification of these proteins was significantly associated with poor prognoses as determined by the Kaplan-Meier method. LC-MALDI-TOF/TOF mass spectrometry identified R50, K327, and P357 as carbonylated sites in serotransferrin, HSP70.1, and A1AT, respectively. Moreover, iron accumulation was significantly higher in CCA tissues with, compared to those without, carbonylated serotransferrin. We conclude that carbonylated serotransferrin-associated iron accumulation may induce oxidative stress via the Fenton reaction, and the carbonylation of HSP70.1 with antioxidative property and A1AT with protease inhibitory capacity may cause them to become dysfunctional, leading to CCA progression.  相似文献   

11.
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins – the most susceptible to oxidative modification – lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.  相似文献   

12.
This study reports for the first time qualitative and quantitative differences in carbonylated proteins shed into blood as a function of increasing levels of OS. Carbonylated proteins in freshly drawn blood from pairs of diabetic and lean rats were derivatized with biotin hydrazide, dialyzed, and enriched with avidin affinity chromatography. Proteins thus selected were used in several ways. Differences between control and diabetic subjects in relative concentration of proteins was achieved by differential labeling of tryptic digests with iTRAQ reagents followed by reversed phase chromatography (RPC) and tandem mass spectrometry (MS/MS). Identification and characterization of OS induced post-translational modification sites in contrast was achieved by fractionation of affinity selected proteins before proteolysis and RPC-MS/MS. Relative quantification of peptides bearing oxidative modifications was achieved for the first time by selective reaction monitoring (SRM). Approximately 1.7% of the proteins in Zucker diabetic rat plasma were selected by the avidin affinity column as compared to 0.98% in lean animal plasma. Among the 35 proteins identified and quantified, Apo AII, clusterin, hemopexin precursor, and potassium voltage-gated channel subfamily H member 7 showed the most dramatic changes in concentration. Seventeen carbonylation sites were identified and quantified, 11 of which changed more than 2-fold in oxidation state. Three types of carbonylation were identified at these sites: direct oxidative cleavage from reactive oxygen species, glycation and addition of advanced glycation end products, and addition of lipid peroxidation products. Direct oxidation was the dominant form of carbonylation observed while hemoglobin and murinoglobulin 1 homologue were the most heavily oxidized proteins.  相似文献   

13.
The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague–Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed.  相似文献   

14.
We previously reported that photodynamic therapy (PDT) using Purpurin-18 (Pu-18) induces apoptosis in HL60 cells. Using flow cytometry, two-dimensional electrophoresis coupled with immunodetection of carbonylated proteins and mass spectrometry, we now show that PDT-induced apoptosis is associated with increased reactive oxygen species generation, glutathione depletion, changes in mitochondrial transmembrane potential, simultaneous downregulation of mitofilin and carbonylation of specific proteins: glucose-regulated protein-78, heat-shock protein 60, heat-shock protein cognate 71, phosphate disulphide isomerase, calreticulin, beta-actin, tubulin-alpha-1-chain and enolase-alpha. Interestingly, all carbonylated proteins except calreticulin and enolase-alpha showed a pI shift in the proteome maps. Our results suggest that PDT with Pu-18 perturbs the normal redox balance and shifts HL60 cells into a state of oxidative stress, which systematically induces the carbonylation of specific chaperones. As these proteins normally produce a prosurvival signal during oxidative stress, we hypothesize that their carbonylation represents a signalling mechanism for apoptosis induced by PDT.  相似文献   

15.
There is a growing interest in protein expression profiling aiming to identify novel diagnostic markers in breast cancer. Proteomic approaches such as two-dimensional differential gel electrophoresis coupled with tandem mass spectrometry analysis (2-D DIGE/MS/MS) have been used successfully for the identification of candidate biomarkers for screening, diagnosis, prognosis and monitoring of treatment response in various types of cancer. Identifying previously unknown proteins of potential clinical relevance will ultimately help in reaching effective ways to manage the disease. We analyzed breast cancer tissues from five tumor and five normal tissue samples from ten breast cancer subjects with infiltrating ductal carcinoma (IDC) by 2-D DIGE using two types of immobilized pH gradient (IPG) strips: pH 3-10 and pH 4-7. From all the spots detected, differentially expressed (p < 0.05 and ratio > 2) were 50 spots. Of these, 39 proteins were successfully identified by MS, representing 29 different proteins. Ten proteins were overexpressed in the tumor samples. The 2-D DIGE/MS/MS analysis revealed an increase in the expression levels in tumor samples of several proteins not previously associated with breast cancer, such as: macrophage-capping protein (CAPG), phosphomannomutase 2 (PMM2), ATPase ASN1, methylthioribose-1-phosphate isomerase (MRI1), peptidyl-prolyl cis-trans isomerase FKBP4, cellular retinoic acid-binding protein 2 (CRABP2), lamin B1 and keratin, type II cytoskeletal 8 (KRT8). Ingenuity Pathway Analysis (IPA) revealed highly significant (p = 10(-26)) interactions between the identified proteins and their association with cancer. These proteins are involved in many diverse pathways and have established roles in cellular metabolism. It remains the goal of future work to test the suitability of the identified proteins in samples of larger and independent patient groups.  相似文献   

16.
Breast cancer is a molecularly heterogeneous disease, and predicting response to chemotherapy remains a major clinical challenge. To minimize adverse side-effects or cumulative toxicity in patients unlikely to benefit from treatment, biomarkers indicating treatment efficacy are critically needed. iTRAQ labeling coupled with multidimensional LC-MS/MS of the enriched mitochondria and endoplasmic reticulum fraction, key organelles regulating apoptosis, has led to the discovery of several differentially abundant proteins in breast cancer cells treated with the chemotherapeutic agent doxorubicin followed by the death receptor ligand, TRAIL, among 571 and 801 unique proteins identified in ZR-75-1 and MDA-MB-231 breast cancer cell lines, respectively. The differentially abundant proteins represent diverse biological processes associated with cellular assembly and organization, molecular transport, oxidative stress, cell motility, cell death, and cancer. Despite many differences in molecular phenotype between the two breast cancer cell lines, a comparison of their subproteomes following drug treatment revealed three proteins displaying common regulation: PPIB, AHNAK, and SLC1A5. Changes in these proteins, detected by iTRAQ, were confirmed by immunofluorescence, visualized by confocal microscopy. These novel potential biomarkers may have clinical utility for assessing response to cancer treatment and may provide insight into new therapeutic targets for breast cancer.  相似文献   

17.
Both oxidative and endoplasmic reticulum (ER) stress is associated with multiple neurodegenerative, age-related diseases. The rare disorder Pick disease (PiD) shares some pathological hallmarks of other neurodegenerative diseases that may be related to oxidative stress. Importantly, activation of an ER stress response, which is also involved in aging, has not yet been investigated in PiD. In this study, we assessed the implication of ER stress associated with oxidative stress in PiD as a potential mechanism involved in its pathogenesis. Samples from morphologically affected frontal cortex and apparently pathologically preserved occipital cortex showed region-dependent increases in different protein oxidative damage pathways. The oxidative modifications targeted antioxidant enzymes, proteases, heat shock proteins, and synaptic proteins. These effects were associated with compromised proteasomal function and ER stress in frontal cortex samples. In addition, we observed a depletion in ER chaperones (glucose-regulated proteins Grp78/BiP and glucose-regulated protein 94) and differences in tissue content and distribution of nuclear factor-erythroid 2 p45-related respiratory 2, required for cell survival during the unfolded protein response. These results demonstrate increased region-specific protein oxidative damage in PiD, with proteasomal alteration and dysfunctional ER stress response. We suggest this was caused by complete and specific depletion of Grp78/BiP, contributing to the pathophysiology of this neurodegenerative disease.  相似文献   

18.
Recent work has highlighted the importance of protein post-translational modifications such as phosphorylation (enzymatic) and nitrosylation (nonenzymatic) in the early stages of apoptosis. In this study, we have investigated the levels of protein carbonylation, a nonenzymatic protein modification that occurs in conditions of cellular oxidative stress, during etopside-induced apoptosis of HL60 cells. Within 1 h of VP16 treatment, a number of proteins underwent carbonylation due to oxidative stress. This was inhibited by the antioxidant N-acetyl-L-cysteine. Among the proteins found to be carbonylated were glycolytic enzymes. Subsequently, we found that the rate of glycolysis was significantly reduced, probably due to a carbonylation mediated reduction in enzymatic activity of glycolytic enzymes. Our work demonstrates that protein carbonylation can be rapidly induced through cytotoxic drug treatment and may specifically inhibit the glycolytic pathway. Given the importance of glycolysis as a source of cellular ATP, this has severe implications for cell function.  相似文献   

19.
Fruit senescence has been reported to be an oxidative phenomenon, but the detailed mechanisms by which ROS regulate this process remain largely unknown. Here we show that senescence process of apple fruit was concomitant with the dynamic alterations in the mitochondrial proteome. Mitochondrial proteins involved in tricarboxylic acid cycle, electron transport chain, carbon metabolism, and stress response were found to be differentially expressed during fruit senescence. Alleviating oxidative stress by lowering the ambient oxygen concentration noticeably decreased the number of changed proteins and delayed fruit senescence, indicating the involvement of ROS in this process. To further investigate the regulatory effect of ROS on senescence process, we analyzed the mitochondrial proteome variations upon exposure to high oxygen (100%), which induces oxidative stress and accelerates fruit senescence. High oxygen treatment led to a further identification of differentially expressed proteins such as mitochondrial manganese superoxide dismutase, an antioxidant scavenging superoxide radicals produced in the mitochondria. Activity of manganese superoxide dismutase was reduced after high oxygen exposure, accompanied by an increase in oxidative protein carbonylation (damaged proteins). These data suggest that ROS may regulate fruit senescence by changing expression profiles of specific mitochondrial proteins and impairing the biological function of these proteins.  相似文献   

20.
Je JH  Lee TH  Kim DH  Cho YH  Lee JH  Kim SC  Lee SK  Lee J  Lee MG 《Proteomics》2008,8(12):2384-2393
ROS are produced in dendritic cells (DCs) during antigen presentation in contact hypersensitivity (CHS). As a result, ROS cause a number of nonenzymatic protein modifications, including carbonylation, which is the most widely used marker of oxidative stress. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) is a well-characterized contact allergen that results in the formation of ROS. However, proteins that are carbonylated in DCs in response to TNBS have not been identified. To study ROS-dependent protein carbonylation in response to TNBS, we used the well-established mouse DC line, XS-106. We focused on the effects of TNBS on oxidation by examining selected oxidative markers. We identified TNBS-induced ROS and myeloperoxidase (MPO) proteins and demonstrated that the increase in ROS resulted in IL-12 production. The increase in oxidation was further confirmed by an oxidation-dependent increase in protein modifications, such as carbonylation. In fact, TNBS strongly induced carbonylation of mitochondrial adenosine triphosphate (ATP) synthase in XS-106 DCs, as determined by MALDI-TOF analysis and 2-D Western blotting. ROS production and protein carbonylation were confirmed in human monocyte-derived DCs (Mo-DCs). Furthermore, glutathione (GSH) decreased ROS and protein carbonylation in Mo-DCs. Carbonylation of ATP synthase in DCs may contribute to the pathophysiology of CHS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号