首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Aeromonas hydrophila AH-3 WecP represents a new class of UDP-HexNAc:polyprenol-P HexNAc-1-P transferases. These enzymes use a membrane-associated polyprenol phosphate acceptor (undecaprenyl phosphate [Und-P]) and a cytoplasmic UDP-d-N-acetylhexosamine sugar nucleotide as the donor substrate. Until now, all the WecA enzymes tested were able to transfer UDP-GlcNAc to the Und-P. In this study, we present in vitro and in vivo proofs that A. hydrophila AH-3 WecP transfers GalNAc to Und-P and is unable to transfer GlcNAc to the same enzyme substrate. The molecular topology of WecP is more similar to that of WbaP (UDP-Gal polyprenol-P transferase) than to that of WecA (UDP-GlcNAc polyprenol-P transferase). WecP is the first UDP-HexNAc:polyprenol-P GalNAc-1-P transferase described.  相似文献   

2.
Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.  相似文献   

3.
L Wang  D Liu    P R Reeves 《Journal of bacteriology》1996,178(9):2598-2604
We previously showed that the product of the wbaP gene of Salmonella enterica serovar Typhimurium has two functions: it is involved in the first step of O-antigen synthesis (the galactosyltransferase [GT] function) and in a later step (the T function), first thought to be the flipping of the O-antigen subunit on undecaprenyl pyrophosphate from the cytoplasmic face to the periplasmic face of the cytoplasmic membrane. We now locate two wbaP(T) mutations within the first half of the wbaP gene by sequencing. Both mutants retain GT activity, although one was a frameshift mutation resulting in a stop codon 10 codons after the frameshift to give an open reading frame containing only 138 of the 476 codons in WbaP. We also show that there is a secondary translation starting within the wbaP gene resulting in the synthesis of a polypeptide with GT activity. These results indicate that the N- and C-terminal halves of WbaP are the T and GT functional domains, respectively. We now propose that the T block operates prior to the flippase function, probably at the release of undecaprenyl pyrophosphate-linked galactose from WbaP.  相似文献   

4.
The gene wchA (cap8E) belongs to the cps8 locus that is involved in biosynthesis of the capsular polysaccharide (CPS) repeat unit (RU) of the virulent Streptococcus pneumoniae serotype 8. We report here the biochemical characterization of the membrane-associated protein WchA (Cap8E), overexpressed in Escherichia coli BL21(DE3)/pLysS. Our results demonstrate that the recombinant enzyme transfers in vitro a glucosyl-1-phosphate from UDP-glucose to an endogenous phosphoryl-polyprenol, thereby priming the RU biosynthetic pathway of S. pneumoniae CPS 8. We also show that the C-terminal half of WchA is the glycosyltransferase domain as observed for the galactosyl-1-phosphate transferase WbaP from Salmonella enterica, previously described to prime the first step of O-antigen biosynthesis. These results demonstrate that WchA plays a prominent function in the capsule biosynthesis and explain the key role it occupies in the pneumococcal capsule variation.  相似文献   

5.
Guanylyl cyclases (GCs) catalyze the formation of the second messenger guanosine 3',5'-cyclic monophosphate (cGMP) from guanosine 5'-triphosphate (GTP). While many cGMP-mediated processes in plants have been reported, no plant molecule with GC activity has been identified. When the Arabidopsis thaliana genome is queried with GC sequences from cyanobacteria, lower and higher eukaryotes no unassigned proteins with significant similarity are found. However, a motif search of the A. thaliana genome based on conserved and functionally assigned amino acids in the catalytic center of annotated GCs returns one candidate that also contains the adjacent glycine-rich domain typical for GCs. In this molecule, termed AtGC1, the catalytic domain is in the N-terminal part. AtGC1 contains the arginine or lysine that participates in hydrogen bonding with guanine and the cysteine that confers substrate specificity for GTP. When AtGC1 is expressed in Escherichia coli, cell extracts yield >2.5 times more cGMP than control extracts and this increase is not nitric oxide dependent. Furthermore, purified recombinant AtGC1 has Mg(2+)-dependent GC activity in vitro and >3 times less adenylyl cyclase activity when assayed with ATP as substrate in the absence of GTP. Catalytic activity in vitro proves that AtGC1 can function either as a monomer or homo-oligomer. AtGC1 is thus not only the first functional plant GC but also, due to its unusual domain organization, a member of a new class of GCs.  相似文献   

6.
7.
Cleavage-polyadenylation specificity factor (CPSF) is one of five separable factors known to be required for 3' cleavage and polyadenylation of mRNA precursors in vitro. Previous studies have shown that the cleavage and poly(A) addition reactions can be uncoupled in vitro and have suggested that CPSF may be the only factor essential for both of these subreactions. Here we report the purification of CPSF to near homogeneity from calf thymus and show that the purified factor contains three polypeptides of 165, 105, and 70 kDa. These polypeptides cosediment precisely with CPSF activity, which has a sedimentation coefficient of 11.5 S. Consistent with previous reports from our laboratory, purified CPSF does not contain a detectable RNA component, indicating that it is a multisubunit protein and not a small nuclear ribonucleoprotein. Extensively purified bovine CPSF can function with human poly(A) polymerase to bring about AAUAAA-dependent poly(A) addition or with human cleavage factors to catalyze accurate 3' cleavage of a pre-mRNA substrate. UV cross-linking and gel retention analyses demonstrate that highly purified CPSF interacts with one of these cleavage factors, the multisubunit cleavage-stimulation factor, to facilitate stable binding of both to an AAUAAA-containing pre-mRNA. Likewise, evidence is presented indicating that poly(A) polymerase and CPSF can interact directly.  相似文献   

8.
The iron-molybdenum cofactor (FeMo-co) of nitrogenase contains molybdenum, iron, sulfur, and homocitrate in a ratio of 1:7:9:1. In vitro synthesis of FeMo-co has been established, and the reaction requires an ATP-regenerating system, dithionite, molybdate, homocitrate, and at least NifB-co (the metabolic product of NifB), NifNE, and dinitrogenase reductase (NifH). The typical in vitro FeMo-co synthesis reaction involves mixing extracts from two different mutant strains of Azotobacter vinelandii defective in the biosynthesis of cofactor or an extract of a mutant strain complemented with the purified missing component. Surprisingly, the in vitro synthesis of FeMo-co with only purified components failed to generate significant FeMo-co, suggesting the requirement for one or more other components. Complementation of these assays with extracts of various mutant strains demonstrated that NifX has a role in synthesis of FeMo-co. In vitro synthesis of FeMo-co with purified components is stimulated approximately threefold by purified NifX. Complementation of these assays with extracts of A. vinelandii DJ42. 48 (DeltanifENX DeltavnfE) results in a 12- to 15-fold stimulation of in vitro FeMo-co synthesis activity. These data also demonstrate that apart from the NifX some other component(s) is required for the cofactor synthesis. The in vitro synthesis of FeMo-co with purified components has allowed the detection, purification, and identification of an additional component(s) required for the synthesis of cofactor.  相似文献   

9.
10.
Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2.  相似文献   

11.
M13 procoat inserts into liposomes in the absence of other membrane proteins   总被引:11,自引:0,他引:11  
Procoat, the precursor form of the major coat protein of coliphage M13, assembles into the Escherichia coli inner membrane and is cleaved to mature coat protein by leader peptidase. This assembly process has previously been reconstituted using lipids and purified leader peptidase in a cell-free protein synthesis reaction (Watts, C., Silver, P., and Wickner, W. (1981) Cell 25, 347-353; Ohno-Iwashita, Y., and Wickner, W. (1983) J. Biol. Chem. 258, 1895-1900). We now report that procoat can also cross a liposomal membrane composed of only purified phospholipids; leader peptidase is not needed to catalyze insertion. When procoat is synthesized in vitro in the presence of liposomes with encapsulated chymotrypsin, the procoat inserts spontaneously through the membrane and is degraded. The protease was shown by several criteria to be in the lumen of the liposomes. These results demonstrate that the precursor form of an E. coli integral membrane protein can cross a membrane without the aid of leader peptidase or any other membrane proteins.  相似文献   

12.
13.
A crystal structure of the bacteriophage T7 gene 5 protein/Escherichia coli thioredoxin complex reveals a region in the exonuclease domain (residues 144-157) that is not present in other members of the E. coli DNA polymerase I family. To examine the role of this region, a genetically altered enzyme that lacked residues 144-157 (T7 polymerase (pol) Delta144-157) was purified and characterized biochemically. The polymerase activity and processivity of T7 pol Delta144-157 on primed M13 DNA are similar to that of wild-type T7 DNA polymerase implying that these residues are not important for DNA synthesis. The ability of T7 pol Delta144-157 to catalyze the hydrolysis of a phosphodiester bond, as judged from the rate of hydrolysis of a p-nitrophenyl ester of thymidine monophosphate, also remains unaffected. However, the 3'-5' exonuclease activity on polynucleotide substrates is drastically reduced; exonuclease activity on single-stranded DNA is 10-fold lower and that on double-stranded DNA is 20-fold lower as compared with wild-type T7 DNA polymerase. Taken together, our results suggest that residues 144-157 of gene 5 protein, although not crucial for polymerase activity, are important for DNA binding during hydrolysis of polynucleotides.  相似文献   

14.
Non-homologous end joining (NHEJ) is one of two pathways responsible for the repair of double-strand breaks in eukaryotic cells. The mechanism involves the alignment of broken DNA ends with minimal homology, fill in of short gaps by DNA polymerase(s), and ligation by XRCC4-DNA ligase IV complex. The gap-filling polymerase has not yet been positively identified, but recent biochemical studies have implicated DNA polymerase lambda (pol lambda), a novel DNA polymerase that has been assigned to the pol X family, in this process. Here we demonstrate that purified pol lambda can efficiently catalyze gap-filling synthesis on DNA substrates mimicking NHEJ. By designing two truncated forms of pol lambda, we also show that the unique proline-rich region in pol lambda plays a role in limiting strand displacement synthesis, a feature that may help its participation in in vivo NHEJ. Moreover, pol lambda interacts with XRCC4-DNA ligase IV via its N-terminal BRCT domain and the interaction stimulates the DNA synthesis activity of pol lambda. Taken together, these data strongly support that pol lambda functions in DNA polymerization events during NHEJ.  相似文献   

15.
Hagan CL  Kahne D 《Biochemistry》2011,50(35):7444-7446
β-Barrel proteins are folded and inserted into the outer membranes of Escherichia coli by the Bam complex. The Bam complex has been purified and functionally reconstituted in vitro. We report conditions for reconstitution that increase the folding yield 10-fold and allow us to monitor the time course of folding directly. We use these conditions to analyze the effect of a mutation in the Bam complex and to demonstrate the ability of the reconstituted complex to catalyze more than one round of substrate assembly.  相似文献   

16.
17.
Deng L  Wang C  Spencer E  Yang L  Braun A  You J  Slaughter C  Pickart C  Chen ZJ 《Cell》2000,103(2):351-361
TRAF6 is a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. We have purified a heterodimeric protein complex that links TRAF6 to IKK activation. Peptide mass fingerprinting analysis reveals that this complex is composed of the ubiquitin conjugating enzyme Ubc13 and the Ubc-like protein Uev1A. We find that TRAF6, a RING domain protein, functions together with Ubc13/Uev1A to catalyze the synthesis of unique polyubiquitin chains linked through lysine-63 (K63) of ubiquitin. Blockade of this polyubiquitin chain synthesis, but not inhibition of the proteasome, prevents the activation of IKK by TRAF6. These results unveil a new regulatory function for ubiquitin, in which IKK is activated through the assembly of K63-linked polyubiquitin chains.  相似文献   

18.
Ingley E  Hemmings BA 《FEBS letters》2000,478(3):253-259
The pleckstrin homology (PH) domain of the protooncogenic serine/threonine protein kinase PKB/Akt can bind phosphoinositides. A yeast-based two-hybrid system was employed which identified inosine-5' monophosphate dehydrogenase (IMPDH) type II as specifically interacting with PKB/Akts PH domain. IMPDH catalyzes the rate-limiting step of de novo guanosine-triphosphate (GTP) biosynthesis. Using purified fusion proteins, PKB/Akts PH domain and IMPDH associated in vitro and this association moderately activated IMPDH. Purified PKB/Akt also associated with IMPDH in vitro. We could specifically pull-down PKB/Akt or IMPDH from mammalian cell lysates using glutathione-S-transferase (GST)-IMPDH or GST-PH domain fusion proteins, respectively. Additionally, PKB/Akt and IMPDH could be co-immunoprecipitated from COS cell lysates and active PKB/Akt could phosphorylate IMPDH in vitro. These results implicate PKB/Akt in the regulation of GTP biosynthesis through its interaction with IMPDH, which is involved in providing the GTP pool used by signal transducing G-proteins.  相似文献   

19.
20.
Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is one of the most common causes of life-threatening bacterial infections in infants. In recent years cell surface pili have been identified in several Gram-positive bacteria, including GBS, as important virulence factors and promising vaccine candidates. In GBS, three structurally distinct types of pili have been discovered (pilus 1, 2a and 2b), whose structural subunits are assembled in high-molecular weight polymers by specific class C sortases. In addition, the highly conserved housekeeping sortase A (SrtA), whose main role is to link surface proteins to bacterial cell wall peptidoglycan by a transpeptidation reaction, is also involved in pili cell wall anchoring in many bacteria. Through in vivo mutagenesis, we demonstrate that the LPXTG sorting signal of the minor ancillary protein (AP2) is essential for pilus 2a anchoring. We successfully produced a highly purified recombinant SrtA (SrtA(ΔN40)) able to specifically hydrolyze the sorting signal of pilus 2a minor ancillary protein (AP2-2a) and catalyze in vitro the transpeptidation reaction between peptidoglycan analogues and the LPXTG motif, using both synthetic fluorescent peptides and recombinant proteins. By contrast, SrtA(ΔN40) does not catalyze the transpeptidation reaction with substrate-peptides mimicking sorting signals of the other pilus 2a subunits (the backbone protein and the major ancillary protein). Thus, our results add further insight into the proposed model of GBS pilus 2a assembly, in which SrtA is required for pili cell wall covalent attachment, acting exclusively on the minor accessory pilin, representing the terminal subunit located at the base of the pilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号