首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chronic ethanol consumption is a risk factor for cardiovascular diseases. We studied whether NAD(P)H oxidase-derived reactive oxygen species (ROS) play a role in ethanol-induced hypertension, vascular dysfunction, and protein expression in resistance arteries. Male Wistar rats were treated with ethanol (20 %?v/v) for 6 weeks. Ethanol treatment increased blood pressure and decreased acetylcholine-induced relaxation in the rat mesenteric arterial bed (MAB). These responses were attenuated by apocynin (30 mg/kg/day; p.o. gavage). Ethanol consumption increased superoxide anion (O2 ?) generation and decreased nitrate/nitrite (NO x ) concentration in the rat MAB and apocynin prevented these responses. Conversely, ethanol did not affect the concentration of hydrogen peroxide (H2O2) and reduced glutathione (GSH) or the activity of superoxide dismutase (SOD) and catalase (CAT) in the rat MAB. Ethanol increased interleukin (IL)-10 levels in the rat MAB but did not affect the levels of tumor necrosis factor (TNF)-α, IL-6, or IL-1β. Ethanol increased the expression of Nox2 and the phosphorylation of SAPK/JNK, but reduced eNOS expression in the rat MAB. Apocynin prevented these responses. However, ethanol treatment did not affect the expression of Nox1, Nox4, p38MAPK, ERK1/2, or SAPK/JNK in the rat MAB. Ethanol increased plasma levels of TBARS, TNF-α, IL-6, IL-1β, and IL-10, whereas it decreased NO x levels. The major finding of our study is that NAD(P)H oxidase-derived ROS play a role on ethanol-induced hypertension and endothelial dysfunction in resistance arteries. Moreover, ethanol consumption affects the expression and phosphorylation of proteins that regulate vascular function and NAD(P)H oxidase-derived ROS play a role in such responses.  相似文献   

2.
Summary Mice deprived of B lymphocytes by the chronic administration of anti-IgM antibodies have been shown to possess a heightened natural resistance (NR) to micro-organisms, to parental bone marrow, and to natural killer (NK)-sensitive tumors in vitro and in vivo. Experiments described in this communication indicate that the latent period of primary tumors induced by the injection of methylcholanthrene (MC) is also prolonged in these mice. This observation suggests that NR mechanisms may provide protection against primary chemically induced tumors. Abbreviations used in this paper: MC, methylcholanthrene; NR, natural resistance; NRG, normal rabbit serum pool; NK, natural killer cell  相似文献   

3.
Gestational diabetes mellitus (GDM) characterizes by foetoplacental endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) from women with GDM show increased L-arginine transport via the human cationic amino acid transporter 1 (hCAT-1). Moreover, expression of endothelial nitric oxide synthase (eNOS) and nitric oxide synthesis are increased. Exosomes are increased in maternal plasma from GDM. We evaluated the role of foetoplacental endothelial exosomes on endothelial dysfunction in GDM. Exosomes were isolated from HUVECs from normal (ExN) and GDM (ExGDM) pregnancies. HUVECs were exposed (8 h) to ExN or ExGDM and used for wound recovery assay (up to 8 h), L-arginine transport, hCAT-1 and eNOS expression and activity, reactive oxygen species (ROS) generation, and 44 and 42 kDa mitogen activated protein kinases (p44/42mapk) and protein kinase B/Akt (Akt) activation. Wound recovery was slower in GDM compared with normal pregnancies and was recovered by ExN. However, ExGDM delayed wound recovery in cells from normal pregnancies. GDM-increased L-arginine transport, hCAT-1 and eNOS expression and activity, and p44/42mapk activation were blocked by ExN, but ExGDM increased these parameters and ROS generation, and reduced eNOS phosphorylation at threonine495 in cells from normal pregnancies. Inhibition of p44/42mapk, but not Akt reversed GDM-increased L-arginine uptake. In conclusion foetoplacental endothelial-released exosomes play a role in the maintenance of a GDM phenotype in HUVECs. It is suggested that ExN and ExGDM cargo are different with differential effects in cells from normal or GDM pregnancies. This phenomenon could contribute to the understanding of mechanisms behind foetoplacental endothelial dysfunction in GDM pregnancies.  相似文献   

4.
Endothelial cell (EC) barrier regulation is critically dependent on cytoskeletal components (microfilaments and microtubules). Because several edemagenic agents induce actomyosin-driven EC contraction tightly linked to myosin light chain (MLC) phosphorylation and microfilament reorganization, we examined the role of microtubule components in bovine EC barrier regulation. Nocodazole or vinblastine, inhibitors of microtubule polymerization, significantly decreased transendothelial electrical resistance in a dose-dependent manner, whereas pretreatment with the microtubule stabilizer paclitaxel significantly attenuated this effect. Decreases in transendothelial electrical resistance induced by microtubule disruption correlated with increases in lung permeability in isolated ferret lung preparations as well as with increases in EC stress fiber content and MLC phosphorylation. The increases in MLC phosphorylation were attributed to decreases in myosin-specific phosphatase activity without significant increases in MLC kinase activity and were attenuated by paclitaxel or by several strategies (C3 exotoxin, toxin B, Rho kinase inhibition) to inhibit Rho GTPase. Together, these results suggest that microtubule disruption initiates specific signaling pathways that cross talk with microfilament networks, resulting in Rho-mediated EC contractility and barrier dysfunction.  相似文献   

5.
The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase-2 (COX-2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX-2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX-2 overexpression by COX-2-dependent PGE2-EP2-ERK1/2-NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX-2-independent LKB1-AMPK-NRF2-HO-1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX-2-dependent and COX-2-independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.  相似文献   

6.
We studied the in vitro and in vivo influence of physiologically relevant zinc concentrations on the thyrotropin function both at the pituitary and hypothalamic level. Zinc gluconate (Zn Glu) concentrations from 5 to 100 microM decreased basal TSH release from anterior pituitary gland in vitro, but did not affect TSH-stimulated release by TRH, cAMP or high K+ concentrations. Zn Glu altered neither the basal nor stimulated production of TRH by hypothalami in vitro. In vivo brain third ventricle injection of Zn Glu decreased serum TSH 30-60 min after injection. The ability of physiological concentrations of zinc to influence TSH secretion both in vitro and in vivo suggest that this trace element might be involved in the regulation of thyrotropin function.  相似文献   

7.
Propylthiouracil (PTU) is one of the most common drugs used in hyperthyroidism in general medical practice. PTU may also trigger the development of thyroid lymphoma through induction of abnormal immunological events in thyroid tissue.  相似文献   

8.
Summary Phagocytosis in Amoeba proteus can be induced with prostaglandins (PG). In addition, arachidonic acid (the fatty acid precursor to the PG-2 series) also induces phagocytosis. The induction of phagocytosis with arachidonic acid can be partially inhibited by the cyclooxygenase inhibitor indomethacin. Phagocytosis in the amoeba can also be induced with the chemotactic peptide N-formylmethionyl-leucylphenylalanine (NFMLP). The peptide presumably induces phagocytosis by interacting with receptors on the amoeba surface, which may initiate the release of arachidonic acid from membrane lipids. NFMLP-induced phagocytosis can also be partially inhibited by indomethacin. It is suggested that PG's or biochemically related substances may play a signal-coupling role during phagocytosis in the amoeba.  相似文献   

9.
In previous studies, tobacco protoplasts were transformed with the bacterial gene encoding neomycin phosphotransferase II (NPT II). Transformed calluses lost neomycin phosphotransferase II activity after several subcultures. Treatment of calluses with 5-azacytidine, a demethylating agent, restored enzyme activity, suggesting that methylation of npt II sequences might be responsible for loss of NPT II activity. Studies presented here were designed to test that hypothesis. Results indicated that the effect of 5-azacytidine could not be blocked by the DNA replication inhibitor, hydroxyurea, nor by the 5-azacytidine analogue, cytidine as would be expected with a DNA demethylation mechanism. The level of NPT II mRNA was not increased by 5-azacytidine. Treatment with cycloheximide, a protein synthesis inhibitor, had no effect on 5-azacytidine-increased NPT II activity. There was no increase of NPT II protein caused by 5-azacytidine, whereas 5-azacytidine increased activity of NPT II. In contrast, the auxin 2,4-D increased both the NPT II protein and activity. Assays for malate dehydrogenase demonstrated that the effect of 5-azacytidine and hydroxyurea on NPT II was not due to an overall effect on callus metabolism. In vitro studies involving standard bacterial NPT II enzyme and crude extracts from untreated and 5-azacytidine- or hydroxyurea-treated calluses showed that the activity of NPT II added to the untreated extracts was lower than the activity of NPT II added to the extracts from calluses treated with 5-azacytidine or hydroxyurea, indicating that there was an unknown factor (or factors) in callus extracts which affected the activity of NPT II and itself was affected by 5-azacytidine and hydroxyurea treatment. These results suggested that one effect of 5-azacytidine in increasing NPT II activity was posttranslational.Abbreviations ELISA enzyme-linked immunosorbent assay - NOS nopalene synthase - nos DNA segment encoding NOS - NPT II neomycin phosphotransferase - npt II DNA segment encoding NPT II - PAGE polyacrylamide gel electrophoresis  相似文献   

10.
11.
Vascular heme oxygenase (HO) metabolizes heme to form carbon monoxide (CO). Increased heme-derived CO inhibits nitric oxide synthase and can contribute to hypertension via endothelial dysfunction in Dahl salt-sensitive rats. Obese Zucker rats (ZR) are models of metabolic syndrome. This study tests the hypothesis that endogenous CO formation is increased and contributes to hypertension and endothelial dysfunction in obese ZR. Awake obese ZR showed increased respiratory CO excretion, which was lowered by HO inhibitor administration [zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) 25 micromol.kg(-1).24 h(-1) ip]. In awake obese ZR, chronically instrumented with femoral arterial catheters, blood pressure was elevated but was decreased by the HO inhibitor ZnDPBG. Body weight, blood glucose, glycated hemoglobin, plasma insulin, total and LDL cholesterol, oxidized LDL, and triglyceride levels were elevated in obese ZR, and, except for LDL cholesterol, were unchanged by HO inhibition. Total HO-1 protein levels were not different between lean and obese ZR aortas. In vitro experiments used isolated skeletal muscle arterioles with constant pressure and no flow, or constant midpoint, but altered endpoint pressures to establish graded levels of luminal flow. In obese ZR arterioles, responses to ACh and flow were attenuated. Acute in vitro pretreatment with an HO inhibitor, chromium mesoporphyrin, enhanced ACh and flow-induced dilation and abolished the differences between groups. Furthermore, exogenous CO prevented the restoration of flow-induced dilation by the HO inhibitor in obese ZR arterioles. These results suggest that HO-derived CO production is increased and promotes hypertension and arteriolar endothelial dysfunction in obese ZR with metabolic syndrome independent of affecting metabolic parameters.  相似文献   

12.
A hypothesis: noncyclic phosphodiesters may play a role in membrane control   总被引:2,自引:0,他引:2  
The study of the metabolism of GPC and SEP has the potential to demonstrate a previously undiscovered method by which the cytosol can communicate with membrane.  相似文献   

13.
Transgenic tobacco (Nicotiana tabacum) with altered levels of mitochondrial alternative oxidase (AOX) were used to examine the potential role of this electron transport chain protein in resistance to tobacco mosaic virus. We examined the effect of AOX expression on the salicylic acid-induced resistance in susceptible plants and the resistance responses of plants harboring the N-gene. A lack of AOX did not compromise the ability of salicylic acid treatment to heighten the resistance of susceptible plants. In plants with the N-gene, a lack of AOX did not compromise the ability of the hypersensitive response to restrict the virus or the ability of the plant to develop systemic acquired resistance. Overexpression of AOX did not heighten the resistance of susceptible plants, but did result in smaller hypersensitive response lesions, suggesting a link between mitochondrial function and this programmed cell death event. We conclude that AOX is not a critical component of the previously characterized salicylhydroxamic acid-sensitive pathway important in viral resistance.  相似文献   

14.
15.
Insulin resistance (IR) is involved in the pathogenesis of endothelial dysfunction and is also present in patients with cirrhosis. Intrahepatic endothelial dysfunction plays a major role, increasing hepatic vascular resistance and promoting portal hypertension (PH). In addition, β-adrenergic agonists and insulin share several intracellular signaling pathways. Thus IR may influence the response to β-blockers. This study aimed at evaluating the relationship between IR and hepatic hemodynamics in patients with cirrhosis and with the portal pressure response to acute β-blockade. Forty-nine patients with cirrhosis and PH were included. Hepatic and systemic hemodynamics were measured, and IR was estimated by using the updated homeostasis model assessment (HOMA)-2 index. Patients with HOMA-2 > 2.4 were considered IR. In patients with hepatic venous pressure gradient (HVPG) ≥ 10 mmHg) [clinically significant PH (CSPH)], hemodynamic measurements were performed again 20 min after intravenous propranolol. Mean HOMA-2 index was 3 ± 1.4. Fifty-seven percent of patients had IR. A weak correlation between HOMA-2 index and HVPG was observed. Eighty-six percent of patients had CSPH. HOMA-2 index was an independent predictor of CSPH. However, in patients with CSPH, the correlation between HOMA-2 index and HVPG was lost. HVPG, but not IR, predicted the presence of esophageal varices. Response to propranolol was not different between patients with or without IR. In nondiabetic patients with cirrhosis, HOMA-2 index is directly associated with the presence of CSPH and indirectly with varices, but does not allow either grading HVPG or predicting its response to propranolol.  相似文献   

16.
Cyanidium caldarium (Tilden) Geitler, a unicellular red alga, has extraordinarily high aluminum (Al) tolerance. Algal cells cultured in the presence or absence of Al were subjected to transmission electron microscopy and energy dispersive X-ray analysis. Substantial changes to the thylakoid lumens were observed for the algal cells cultured in medium containing 200 mM Al, while other organelles were largely unaffected. Several spherical electron-dense bodies were found in the cytoplasm near the nucleus of both of the control and Al-treated cells. Although high levels of Fe and P were found in the bodies of control cells, immunocytochemical and morphological analysis data did not match the criteria established for Fe-accumulating substances like ferritin and phytate. In addition to these elements, Al was found in the bodies of the Al-treated cells. These results suggest that the electron-dense bodies function as an Fe-storage site under normal culture conditions, and that sequestration of Al in these bodies contributes to the high Al tolerance exhibited by C. caldarium.  相似文献   

17.
18.
19.
The number of people with the insulin-resistant conditions of type 2 diabetes mellitus (T2DM) and obesity has reached epidemic proportions worldwide. Eighty percent of people with T2DM will die from the complications of cardiovascular atherosclerosis. Insulin resistance is characterised by endothelial dysfunction, which is a pivotal step in the initiation/progression of atherosclerosis. A hallmark of endothelial dysfunction is an unfavourable imbalance between the bioavailability of the antiatherosclerotic signalling molecule nitric oxide (NO) and proatherosclerotic reactive oxygen species. In this review we discuss the mechanisms linking insulin resistance to endothelial dysfunction, with a particular emphasis on a potential role for a toxic effect of free fatty acids on endothelial cell homeostasis.  相似文献   

20.
Migratory shorebirds show regulated seasonal increases in body mass (BM) even in captivity, consisting primarily, but not exclusively, of fat. We examined whether captive red knot (Calidris canutus) exhibited seasonal alterations in mitochondrial volume (liver, pectoral muscle) and/or succinate dehydrogenase (SDH) activity (liver, pectoral muscle, heart, small intestine) during three distinct life-cycle stages: stable BM, spring peak in BM, and as BM rapidly declined after the spring peak. Mitochondrial volume in liver and pectoral muscle and SDH activity in liver and heart did not alter with life-cycle stage. However, red knot undergoing premigratory fattening exhibited significantly lower pectoral muscle SDH activity in concert with significantly elevated activity in the small intestine compared with the other two time-points, suggesting that tissue metabolic rate alters with life-cycle stage. The increased intestinal SDH activity may indicate an elevation in energy assimilation at a time when intestine hypertrophy occurs, thus maximizing BM increase prior to putative migration. The concomitant decrease in pectoral muscle activity may act to reduce overall metabolic rate, or at least help counter the elevation in intestinal mass-specific metabolic rate. Both tissues hypertrophy prior to migration in wild red knot, but hypertrophy of the intestine precedes that of pectoral muscle. Indeed, it appears that the intestinal mass undergoes atrophy by the time pectoral muscle hypertrophy occurs in wild red knot. Thus, physiological adjustments in tissue metabolism may be an important factor in the life-history strategies of migrating shorebirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号