首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin (IL-)1 stimulates prostaglandin E(2)(PGE(2)) generation in fibroblasts, and preferential couplings between particular phospholipase A(2)(PLA(2)) and cyclooxygenase (COX) isozymes are implicated with IL-1-induced delayed PGE(2)generation. The regulatory effects of interferon (IFN)-gamma and IL-4 on IL-1beta-induced COX, PLA(2)isoforms expression and terminal delayed PGE(2)generation were examined in three types of human fibroblasts. These human fibroblasts constitutively expressed cytosolic PLA(2)(cPLA(2)) and COX-1 enzymes, and exhibited delayed PGE(2)generation in response to IL-1beta. IL-1beta also stimulated expression of cPLA(2)and COX-2 only, while constitutive and IL-1beta-induced type IIA and type V secretory PLA(2)s (sPLA(2)s) expression could not be detected. A COX-2 inhibitor and cPLA(2)inhibitor markedly suppressed the IL-1beta-induced delayed PGE(2)generation, while a type IIA sPLA(2)inhibitor failed to affect it. IFN-gamma and IL-4 dramatically inhibited the IL-1beta-induced delayed PGE(2)generation; these cytokines apparently suppressed IL-1beta-stimulated COX-2 expression and only weakly suppressed cPLA(2)expression in response to IL-1beta. These results indicate that IL-1beta-induced delayed PGE(2)generation in these human fibroblasts mainly depends on de novo induction of COX-2 and cPLA(2), irrespective of the constitutive presence of COX-1, and that IFN-gamma and IL-4 inhibit IL-1beta-induced delayed PGE(2)generation by suppressing, predominantly, COX-2 expression.  相似文献   

2.
Transforming growth factor (TGF)-alpha and interleukin (IL)-1beta are responsible for the healing of gastric lesions through, in part, prostaglandin (PG) generation. We examined the contribution of cytosolic and secretory phospholipase A(2)s (cPLA(2) and sPLA(2)) to the PG generation by rat gastric epithelial cells in response to both stimuli. Stimulation with TGF-alpha for 24 h increased cPLA(2) and cyclooxygenase (COX)-2 markedly, PGE(2) slightly, and type IIA sPLA(2) and COX-1 not at all, whereas IL-1beta increased sPLA(2) only. Both stimuli synergistically increased PGE(2), sPLA(2), and the two COXs but not cPLA(2). The onset of the PGE(2) generation paralleled the sPLA(2) release but was apparently preceded by increases in cPLA(2) and the two COXs. The increase in PGE(2) was impaired by inhibitors for sPLA(2) and COX-2 but not COX-1. cPLA(2) inhibitors suppressed PGE(2) generation by TGF-alpha alone but not augmentation of PGE(2) generation or sPLA(2) release by IL-1beta in combination with TGF-alpha. Furthermore, despite an increase in cPLA(2) including its phosphorylated form (phosphoserine), -induced arachidonic acid liberation was impaired in the TGF-alpha/IL-1beta-stimulated cells, in which p11, a putative cPLA(2) inhibitory molecule, was also increased and co-immunoprecipitated with cPLA(2). These results suggest that synergistic stimulation of sPLA(2) and COX-2 expression by TGF-alpha and IL-1beta results in an increase in PGE(2). Presumably, the preceding cPLA(2) expression is not involved in the PGE(2) generation, because of impairment of its hydrolytic activity in the stimulated cells.  相似文献   

3.
Ueno T  Fujimori K 《The FEBS journal》2011,278(16):2901-2912
Prostaglandin (PG) F(2α) suppresses adipocyte differentiation by inhibiting the function of peroxisome proliferator-activated receptor γ. In this study, we identified a novel suppression mechanism, operating in the early phase of adipogenesis, that increased the production of anti-adipogenic PGF(2α) and PGE(2) by enhancing cyclooxygenase (COX) 2 expression through the PGF(2α) -activated FP receptor/extracellular-signal-regulated kinase (ERK)/cyclic AMP response element binding protein (CREB) cascade. COX-2 expression was enhanced with a peak at 1 h for the mRNA level and at 3 h for the protein level after the addition of Fluprostenol, an FP receptor agonist. The Fluprostenol-derived elevation of COX-2 expression was suppressed by the co-treatment with an FP receptor antagonist, AL8810, with a mitogen-activated protein kinase (MEK; ERK kinase) inhibitor, PD98059. ERK was phosphorylated within 10 min after the addition of Fluprostenol, and its phosphorylation was inhibited by the co-treatment with AL8810 or PD98059. Moreover, FP receptor mediated activation of the MEK/ERK cascade and COX-2 expression increased the production of PGF(2α) and PGE(2) . An FP receptor antagonist and each inhibitor for MEK and COX-2 suppressed the PGF(2α) -derived induction of synthesis of these PGs. Furthermore, promoter-luciferase and chromatin immunoprecipitation assays demonstrated that PGF(2α) -derived COX-2 expression was activated through binding of CREB to the promoter region of the COX-2 gene in 3T3-L1 cells. These results indicate that PGF(2α) suppresses the progression of the early phase of adipogenesis by enhancing the binding of CREB to the COX-2 promoter via FP receptor activated MEK/ERK cascade. Thus, PGF(2α) forms a positive feedback loop that coordinately suppresses the early phase of adipogenesis through the increased production of anti-adipogenic PGF(2α) and PGE(2) .  相似文献   

4.
We investigated the action of macrolide antibiotics, which are considered to have anti-inflammatory activity, on lipopolysaccharide (LPS)-stimulated prostaglandin (PG) E2 synthesis and the expression of mRNAs for cytosolic phospholipase A2 (cPLA2), cyclooxygenase (COX)-1, and COX-2 in human leukocytes. The production of LPS-stimulated PGE2 was significantly increased in peripheral polymorphonuclear leukocytes (PMNLs) and in mononuclear leukocytes (MNLs). Amounts of mRNAs for COX-2 and cPLA2, but not for COX-1, were enhanced by LPS in PMNLs and MNLs. The LPS-enhanced PGE2 synthesis and the expression of cPLA2 and COX-2 mRNAs were inhibited by clarithromycin, azithromycin and dexamethasone in PMNLs and MNLs. The mRNA expression of COX-1 in PMNLs was decreased by clarithromycin and azithromycin. Macrolide antibiotics inhibited PGE2 synthesis in human leukocytes by suppressing cPLA2, COX-1, and COX-2 mRNA expression. These data indicate one mechanism of macrolide anti-inflammatory activity.  相似文献   

5.
Phospholipases A2 (PLA2) and cyclooxygenases (COX) are important enzymes responsible for production of potent lipid mediators, including prostaglandins (PG) and thromboxane A2. We investigated coupling between PLA2 and COX isoforms by using transient transfection in COS-1 cells. Untransfected cells, incubated with or without phorbol ester + the Ca2+ ionophore ionomycin, generated trivial amounts of PGE2. In cells co-transfected with cytosolic PLA2 (cPLA2) and COX-1 or COX-2, phorbol ester + ionomycin markedly stimulated PGE2 production. There was no preferential coupling of cPLA2 to either of the COX isoforms. In contrast, group IIA secretory PLA2 (sPLA2) co-transfected with COX-1 or COX-2 did not lead to an increase in PGE2 production, despite high levels of sPLA2 enzymatic activity. Transfection of cPLA2 did not affect basal free arachidonic acid (AA) levels. Phorbol ester + ionomycin stimulated release of AA in cPLA2-transfected COS-1 cells, but not in untransfected cells, whereas sPLA2 transfection (without stimulation) led to high basal free AA. Thus, AA released by cPLA2 is accessible to both COX isoforms for metabolism to PG, whereas AA released by sPLA2 is not metabolized by COX.  相似文献   

6.
Several types of prostaglandin (PG)s are synthesized in adipocytes and involved differently in the control of adipogenesis. To elucidate how the PG synthesis is regulated at different stages in the life cycle of adipocytes, we examined the gene expression of arachidonate cyclooxygenase (COX) pathway leading to the delayed synthesis of PGE2 and PGF2alpha and their roles in adipogenesis after exposure of cultured cells to phorbol 12-myristate 13-acetate (PMA), which is a useful system for monitoring mitogen-induced changes. While the expression of COX-1 remained constitutive, mRNA and protein levels of COX-2 were up-regulated by treatment with PMA. Preadipocytes exhibited higher gene expression of cytosolic phospholipase A2alpha (cPLA2alpha) and PGF synthase. In contrast, three isoforms of PGE synthase are expressed constitutively during all phases. The delayed synthesis of PGE2 and PGF2alpha following the stimulation for 24 with a mixture of PMA and calcium ionophore A23187 was the highest in preadipocytes, reflecting the increased expression levels of cPLA2alpha and COX-2. Cultured cells treated with PMA during the differentiation phase and then exposed to the maturation medium, or cells treated with PMA in the maturation medium after the differentiation phase showed the suppression of adipogenesis in adipocytes. The attenuating effect of PMA was additionally enhanced when the cell were treated along with A32187 during the differentiation phase, suggesting the involvement of endogenous PGs. The cells at the stages of the differentiation and maturation phases were highly sensitive to exogenous PGE2 and PGF2alpha, respectively, resulting in the marked suppression of the stored fats in adipocytes. Taken together, these results provided the evidence for the distinct gene expression of isoformic enzymes in the COX pathway leading to the synthesis of PGE2 and PGF2alpha and the specific action of these prostanoids at different cycle stages of adipocytes.  相似文献   

7.
Arginine vasopressin (AVP) induces immediate prostaglandin E(2) (PGE(2)) production in rat 3Y1 fibroblasts. Judging from effects of several inhibitors, cytosolic phospholipase A(2)alpha (cPLA(2)alpha) and cyclooxygenase-1 (COX-1) were mainly involved in this reaction. The antagonist of vasopressin receptor V1a, and not that of V2, inhibited the AVP-induced PGE(2) synthesis, indicating that AVP activates cPLA(2)alpha through V1a receptor. Treatment of 3Y1 cells with AVP resulted in transient activation of p44/42 mitogen-activated protein kinase (MAPK) and cPLA(2)alpha, and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked not only AVP-induced PGE(2) synthesis but also MAPK activation, suggesting that PI3K is involved in the AVP-induced MAPK and cPLA(2)alpha activation, which initiates the production of PGE(2). These results suggest that PGE(2) generated by the stimulation of AVP probably modulates the physiological effects of AVP.  相似文献   

8.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1beta, TNFalpha and IFNgamma), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

9.
The contribution of cycloxygenase (COX)-1 and COX-2 in antigen-induced release of mediators and ensuing bronchoconstriction was investigated in the isolated perfused guinea pig lung (IPL). Antigen challenge with ovalbumin (OVA) of lungs from actively sensitised animals induced release of thromboxane (TX)A(2), prostaglandin (PG)D(2), PGF(2)(alpha), PGI(2) and PGE(2), measured in the lung effluent as immunoreactive TXB(2), PGD(2)-MOX, PGF(2)(alpha), 6-keto PGF(1)(alpha) and PGE(2), respectively. This release was abolished by the non-selective COX inhibitor flurbiprofen (10 microM). In contrast, neither the selective COX-1 inhibitor FR122047 nor the selective COX-2 inhibitor celecoxib (10 microM each) significantly inhibited the OVA-induced bronchoconstriction or release of COX products, except for PGD(2). Another non-selective COX inhibitor, diclofenac (10 microM) also significantly inhibited antigen-induced bronchoconstriction. The data suggest that both COX isoenzymes, COX-1 and COX-2 contribute to the immediate antigen-induced generation of prostanoids in IPL and that the COX-1 and COX-2 activities are not associated with different profiles of prostanoid end products.  相似文献   

10.
11.
The synthesis of PGE(2), the major vasodilator prostanoid of the ductus arteriosus (DA), is catalyzed by PGE(2) synthases (PGES). The factors implicated in increased PGE(2) synthesis in the perinatal DA are not known. We studied the developmental changes of PGES along with that of cyclooxygenase (COX)-2 and cytosolic phospholipase A(2) (cPLA(2)) in the DA of fetal (75-90% gestation) and immediately postnatal newborn (NB) piglets. Levels of microsomal PGES (mPGES), COX-2, and PGE(2) in the DA of NB were approximately 7-fold higher than in fetus; activities of cytosolic PGES (cPGES) and cPLA(2) in DA of the fetus and NB did not differ. Because platelet-activating factor (PAF) could regulate COX-2 expression, the former was measured and found to be more abundant in the DA of the NB than of fetus. PAF elicited an increase in mPGES, COX-2, and PGE(2) in fetal DA to levels approaching those of the NB; cPGES, cPLA(2), and COX-1 were unaffected. In perinatal NB DA, PAF receptor antagonists BN-52021 and THG-315 reduced mPGES, COX-2, and PGE(2) levels and were associated with increased DA tone. It is concluded that PAF contributes in regulating DA tone by governing mPGES, COX-2, and ensuing PGE(2) levels in the perinate.  相似文献   

12.
In the present study, we characterized the generation of prostaglandin (PG)E2 in human neutrophils. We found that the Ca2+-dependent type IV cytosolic phospholipase A2 (cPLA2) was pivotally involved in the COX-2-mediated generation of PGE2 in response to a calcium ionophore, as determined by the use of selected PLA2 inhibitors. PGE2 biosynthesis elicited by bacterial-derived peptides or by phagocytic stimuli acting on cell surface receptors also showed to be dependent on cPLA2 activity. We then assessed metabolism of unesterified arachidonic acid (AA), and observed that PGE2 production becomes favored over that of LTB4 with higher AA concentrations. Withdrawal of calcium prevented the generation of PGE2 in response to a calcium ionophore but did not affect the up-regulation of COX-2 or its capacity to convert AA, thus limiting its implication at the level of cPLA2 activation. Of the main eicosanoids produced by neutrophils, only LTB4 was able to up-regulate COX-2 expression. Finally, the only PGE synthase isoform found in neutrophils is microsomal PGE synthase-1; it co-localized with COX-2 and its expression appeared mainly constitutive. These results highlight key differences in regulatory processes of the 5-LO and COX pathways, and enhance our knowledge at several levels in the PGE2 biosynthesis in neutrophils.  相似文献   

13.
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.  相似文献   

14.
Our previous study showed that gossypol (GOS) exhibits potent cytotoxic effects via apoptosis induction against human colorectal carcinoma cells; however, the role of cyclooxygenase (COX)-2/prostaglandin (PG)E(2) on GOS-induced apoptosis is still unknown. In the present study, 12-O-tetradecanoylphorbol-13-acetate (TPA) addition significantly inhibited GOS-induced apoptosis in human colorectal carcinoma HT-29 cells in accordance with inducing COX-2 protein/PGE(2) production. TPA inhibition of GOS-induced apoptosis was blocked by adding protein kinase (PK)C inhibitors including staurosporine (ST), GF109203X (GF), and H7, characterized by the occurrence of cleaved caspase 3 proteins and a decrease in COX-2 protein/PGE(2) production in HT-29 cells. The addition of COX activity inhibitors, including NS398 (NS), aspirin (AS), diclofenac (DI), and indomethacin (IN), suppressed TPA protection of GOS-induced apoptosis with decreased PGE(2) production in HT-29 cells. Application of PGE(2), but not it analogs PGD(2), PGJ(2), or PGF(2α), protected HT-29 cells from GOS-induced DNA ladders, and the E-prostanoid (EP(1)) receptor agonist, 17PT-PGE(2), mimicked the protection induced by PGE(2), whereas the selective EP(2) receptor agonist, butaprostol (BUT), the EP(3) receptor agonist, sulprostol (SUL), and the EP(4) receptor agonist, PGE(1) alcohol (PGE(1)), showed no significant effects on GOS-induced apoptosis in HT-29 cells. PGE(2) 's protection against GOS-induced apoptosis was reversed by adding the selective EP(1) receptor antagonist, SC-19220. Furthermore, GOS had an effective apoptotic effect on COLO205 colorectal carcinoma cells which expressed undetectable level of endogenous COX-2 protein than HT-29 cells, and the decreased COX-2 protein level via COX-2 siRNA or addition of COX-2 activity inhibitor NS significantly elevated GOS-induced cell death in HT-29 cells. COLO205-T cells were established through sustained TPA incubation of COLO205 cells, and COLO205-T cells showed a lower sensitivity to GOS-induced cell death with increased COX-2 (not Bcl-2 and Mcl-1) protein than parental COLO-205 cells. A decrease in COX-2 protein expression in COLO205-T cells by COX-2 siRNA transfection or enhanced GOS-induced cell death according to MTT assay and DNA integrity assay. The notion of COX-2/PGE(2) activation against GOS-induced apoptosis in colon carcinoma cells was demonstrated, and the combination of GOS and COX-2 inhibitors to treat colon carcinoma possesses clinical potential worthy of further investigation.  相似文献   

15.
We examined brain phospholipase A2 (PLA2) activity and the expression of enzymes metabolizing arachidonic acid (AA) in cytosolic PLA2 knockout () mice to see if other brain PLA2 can compensate for the absence of cPLA2 alpha and if cPLA2 couples with specific downstream enzymes in the eicosanoid biosynthetic pathway. We found that the rate of formation of prostaglandin E2 (PGE2), an index of net cyclooxygenase (COX) activity, was decreased by 62% in the compared with the control mouse brain. The decrease was accompanied by a 50-60% decrease in mRNA and protein levels of COX-2, but no change in these levels in COX-1 or in PGE synthase. Brain 5-lipoxygenase (5-LO) and cytochrome P450 epoxygenase (cyp2C11) protein levels were also unaltered. Total and Ca2+-dependent PLA2 activities did not differ significantly between and control mice, and protein levels of type VI iPLA2 and type V sPLA2, normalized to actin, were unchanged. These results show that type V sPLA2 and type VI iPLA2 do not compensate for the loss of brain cPLA2 alpha, and that this loss has significant downstream effects on COX-2 expression and PGE2 formation, sparing other AA oxidative enzymes. This suggests that cPLA2 is critical for COX-2-derived eicosanoid production in mouse brain.  相似文献   

16.
Cyclooxygenase (COX)-2 is generally known as an inducible enzyme, and it produces arachidonic acid to prostaglandin E2 (PGE2), which modulates bone metabolism. Here, we investigated the expression and role of COX isomers in human mesenchymal stem cells. Human mesenchymal stem cells constitutively expressed COX-2 as well as COX-1, and secretion of PGE2 was completely inhibited by NS-398, a specific inhibitor of COX-2. Levels of secreted PGE2 were strikingly higher in human mesenchymal stem cells than in osteoblastic cells differentiated from the mesenchymal cells. This higher production of PGE2 in mesenchymal stem cells was due to higher expression of membrane-associated PGE synthase (mPGES) regulated by early growth response factor-1 (Egr-1). Treatment of human mesenchymal stem cells with NS-398 suppressed expression of bone morphogenetic protein-2 (BMP-2). The suppression of BMP-2 by NS-398 was abrogated by an EP4 receptor agonist as well as by PGE2. Moreover, BMP-2 expression was suppressed by an EP4 receptor antagonist. These data indicate that PGE2 produced by COX-2 increases BMP-2 expression via binding the EP4 receptor.  相似文献   

17.
We examined the involvement of cyclooxygenase (COX)-1 as well as COX-2 in the healing of gastric ulcers and investigated which prostaglandin (PG) EP receptor subtype is responsible for the healing-promoting action of PGE2. Male SD rats and C57BL/6 mice, including wild-type, COX-1(-/-), and COX-2(-/-), were used. Gastric ulcers were produced by thermocauterization under ether anesthesia. Gastric ulcer healing was significantly delayed in both rats and mice by indomethacin and rofecoxib but not SC-560 given for 14 days after ulceration. The impaired healing was also observed in COX-2(-/-) but not COX-1(-/-) mice. Mucosal PGE2 content increased after ulceration, and this response was significantly suppressed by indomethacin and rofecoxib but not SC-560. The delayed healing in mice caused by indomethacin was significantly reversed by the coadministration of 11-deoxy-PGE1 (EP3/EP4 agonist) but not other prostanoids, including the EP1, EP2, and EP3 agonists. By contrast, CJ-42794 (selective EP(4) antagonist) significantly delayed the ulcer healing in rats and mice. VEGF expression and angiogenesis were both upregulated in the ulcerated mucosa, and these responses were suppressed by indomethacin, rofocoxib, and CJ-42794. The expression of VEGF in primary rat gastric fibroblasts was increased by PGE2 or AE1-329 (EP4 agonist), and these responses were both attenuated by coadministration of CJ-42794. These results confirmed the importance of COX-2/PGE2 in the healing mechanism of gastric ulcers and further suggested that the healing-promoting action of PGE2 is mediated by the activation of EP4 receptors and is associated with VEGF expression.  相似文献   

18.
19.
We examined the possible role of cyclooxygenase (COX) in charybdotoxin (ChTX)-induced oscillatory contraction in guinea pig trachea. Involvement of prostaglandin E(2) (PGE(2)) in ChTX-induced oscillatory contraction was also investigated. ChTX (100 nM) induced oscillatory contraction in guinea pig trachea. The mean oscillatory frequency induced by ChTX was 10.7 +/- 0.8 counts/h. Maximum and minimum tensions within ChTX-induced oscillatory contractions were 68.4 +/- 1.8 and 14.3 +/- 1.7% compared with K(+) (72.7 mM) contractions. ChTX-induced oscillatory contraction was completely inhibited by indomethacin, a nonselective COX inhibitor. Valeryl salicylate, a selective COX-1 inhibitor, did not significantly inhibit this contraction, whereas N-(2-cyclohexyloxy-4-nitro-phenyl)-methanesulfonamide, a selective COX-2 inhibitor, abolished this contraction. Exogenously applied arachidonic acid enhanced ChTX-induced oscillatory contraction. SC-51322, a selective PGE receptor subtype EP(1) antagonist, significantly inhibited ChTX-induced oscillatory contraction. Exogenously applied PGE(2) induced only a slight phasic contraction in guinea pig trachea, but PGE(2) induced strong oscillatory contraction after pretreatment with indomethacin and ChTX. Moreover, ChTX time-dependently stimulated PGE(2) generation. These results suggest that ChTX specifically activates COX-2 and stimulates PGE(2) production and that ChTX-induced oscillatory contraction in guinea pig trachea is mediated by activation of EP(1) receptor.  相似文献   

20.
The gallbladder (GB) maintains tonic contraction modulated by neurohormonal inputs but generated by myogenic mechanisms. The aim of these studies was to examine the role of prostaglandins in the genesis of GB myogenic tension. Muscle strips and cells were treated with prostaglandin agonists, antagonists, cyclooxygenase (COX) inhibitors, and small interference RNA (siRNA). The results show that PGE2, thromboxane A2 (TxA2), and PGF(2alpha) cause a dose-dependent contraction of muscle strips and cells. However, only TxA2 and PGE2 (E prostanoid 1 receptor type) antagonists induced a dose-dependent decrease in tonic tension. A COX-1 inhibitor decreased partially the tonic contraction and TxB2 (TxA2 stable metabolite) levels; a COX-2 inhibitor lowered the tonic contraction partially and reduced PGE2 levels. Both inhibitors and the nonselective COX inhibitor indomethacin abolished the tonic contraction. Transfection of human GB muscle strips with COX-1 siRNA partially lowered the tonic contraction and reduced COX-1 protein expression and TxB2 levels; COX-2 siRNA also partially reduced the tonic contraction, the protein expression of COX-2, and PGE2. Stretching muscle strips by 1, 2, 3, and 4 g increased the active tension, TxB2, and PGE2 levels; a COX-1 inhibitor prevented the increase in tension and TxB2; and a COX-2 inhibitor inhibited the expected rise in tonic contraction and PGE2. Indomethacin blocked the rise in tension and TxB2 and PGE2 levels. We conclude that PGE2 generated by COX-2 and TxA2 generated by COX-1 contributes to the maintenance of GB tonic contraction and that variations in tonic contraction are associated with concomitant changes in PGE2 and TxA2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号