共查询到20条相似文献,搜索用时 15 毫秒
1.
Makoto Taniguchi Toshiro Okazaki 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(5):692-703
Sphingomyelin constitutes membrane microdomains such as lipid raft, caveolae, and clathrin-coated pits and implicates in the regulation of trans-membrane signaling. On the other hand, sphingomyelin emerges as an important molecule to generate bioactive sphingolipids through ceramide. Sphingomyelin synthase is an enzyme that generates sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Although ceramide has a well-known role as a lipid mediator to regulate cell death and survival, the only known biological role of sphingomyelin regulated by sphingomyelin synthases was limited to being a source of bioactive lipids. Here, we describe the basic characters of sphingomyelin synthases and discuss additional roles for sphingomyelin and sphingomyelin synthase in biological functions including cell migration, apoptosis, autophagy, and cell survival/proliferation as well as in human disorders such as cancer and cardiovascular disorders. It is expected that a better understanding of the role of sphingomyelin regulated by sphingomyelin synthase will shed light on new mechanisms in cell biology, physiology and pathology. In the future, novel therapeutic procedures for currently incurable diseases could be developed through modifying the function of not only sphingolipids, such as sphingomyelin and ceramide, but also of their regulatory enzymes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology. 相似文献
2.
Yasuhiro Hayashi Yoko Nemoto-Sasaki Takashi Tanikawa Saori Oka Kiyoto Tsuchiya Kouta Zama Susumu Mitsutake Takayuki Sugiura Atsushi Yamashita 《The Journal of biological chemistry》2014,289(44):30842-30856
Membrane fusion between the viral envelope and plasma membranes of target cells has previously been correlated with HIV-1 infection. Lipids in the plasma membrane, including sphingomyelin, may be crucially involved in HIV-1 infection; however, the role of lipid-metabolic enzymes in membrane fusion remains unclear. In this study, we examined the roles of sphingomyelin synthase (SMS) in HIV-1 Env-mediated membrane fusion using a cell-cell fusion assay with HIV-1 mimetics and their target cells. We employed reconstituted cells as target cells that stably express Sms1 or Sms2 in Sms-deficient cells. Fusion susceptibility was ∼5-fold higher in Sms2-expressing cells (not in Sms1-expressing cells) than in Sms-deficient cells. The enhancement of fusion susceptibility observed in Sms2-expressing cells was reversed and reduced by Sms2 knockdown. We also found that catalytically nonactive Sms2 promoted membrane fusion susceptibility. Moreover, SMS2 co-localized and was constitutively associated with the HIV receptor·co-receptor complex in the plasma membrane. In addition, HIV-1 Env treatment resulted in a transient increase in nonreceptor tyrosine kinase (Pyk2) phosphorylation in Sms2-expressing and catalytically nonactive Sms2-expressing cells. We observed that F-actin polymerization in the region of membrane fusion was more prominent in Sms2-expressing cells than Sms-deficient cells. Taken together, our research provides insight into a novel function of SMS2 which is the regulation of HIV-1 Env-mediated membrane fusion via actin rearrangement. 相似文献
3.
Mitsutake S Zama K Yokota H Yoshida T Tanaka M Mitsui M Ikawa M Okabe M Tanaka Y Yamashita T Takemoto H Okazaki T Watanabe K Igarashi Y 《The Journal of biological chemistry》2011,286(32):28544-28555
Lipid microdomains or caveolae, small invaginations of plasma membrane, have emerged as important elements for lipid uptake and glucose homeostasis. Sphingomyelin (SM) is one of the major phospholipids of the lipid microdomains. In this study, we investigated the physiological function of sphingomyelin synthase 2 (SMS2) using SMS2 knock-out mice, and we found that SMS2 deficiency prevents high fat diet-induced obesity and insulin resistance. Interestingly, in the liver of SMS2 knock-out mice, large and mature lipid droplets were scarcely observed. Treatment with siRNA for SMS2 also decreased the large lipid droplets in HepG2 cells. Additionally, the siRNA of SMS2 decreased the accumulation of triglyceride in liver of leptin-deficient (ob/ob) mice, strongly suggesting that SMS2 is involved in lipid droplet formation. Furthermore, we found that SMS2 exists in lipid microdomains and partially associates with the fatty acid transporter CD36/FAT and with caveolin 1, a scaffolding protein of caveolae. Because CD36/FAT and caveolin 1 exist in lipid microdomains and are coordinately involved in lipid droplet formation, SMS2 is implicated in the modulation of the SM in lipid microdomains, resulting in the regulation of CD36/FAT and caveolae. Here, we established new cell lines, in which we can completely distinguish SMS2 activity from SMS1 activity, and we demonstrated that SMS2 could convert ceramide produced in the outer leaflet of the plasma membrane into SM. Our findings demonstrate the novel and dynamic regulation of lipid microdomains via conformational changes in lipids on the plasma membrane by SMS2, which is responsible for obesity and type 2 diabetes. 相似文献
4.
David E. Saslowsky Yvonne M. te Welscher Daniel J.-F. Chinnapen Jessica S. Wagner Joy Wan Eli Kern Wayne I. Lencer 《The Journal of biological chemistry》2013,288(36):25804-25809
Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways. 相似文献
5.
6.
C. Randell Brown Guo-Chiuan Hung Danielle Dunton Hui-Ling Chiang 《The Journal of biological chemistry》2010,285(30):23359-23370
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is induced when Saccharomyces cerevisiae are starved of glucose. However, when glucose is added to cells that have been starved for 3 days, FBPase is degraded in the vacuole. FBPase is first imported to Vid (vacuole import and degradation) vesicles, and these vesicles then merge with the endocytic pathway. In this report we show that two additional gluconeogenic enzymes, isocitrate lyase and phosphoenolpyruvate carboxykinase, were also degraded in the vacuole via the Vid pathway. These new cargo proteins and FBPase interacted with the TORC1 complex during glucose starvation. However, Tor1p was dissociated from FBPase after the addition of glucose. FBPase degradation was inhibited in cells overexpressing TOR1, suggesting that excessive Tor1p is inhibitory. Both Tco89p and Tor1p were found in endosomes coming from the plasma membrane as well as in retrograde vesicles forming from the vacuole membrane. When TORC1 was inactivated by rapamycin, FBPase degradation was inhibited. We suggest that TORC1 interacts with multiple cargo proteins destined for the Vid pathway and plays an important role in the degradation of FBPase in the vacuole. 相似文献
7.
Gortat A San-Roman MJ Vannier C Schmidt AA 《The Journal of biological chemistry》2012,287(6):4232-4247
Bin/Amphiphysin/Rvs (BAR) domain-containing proteins are essential players in the dynamics of intracellular compartments. The BAR domain is an evolutionarily conserved dimeric module characterized by a crescent-shaped structure whose intrinsic curvature, flexibility, and ability to assemble into highly ordered oligomers contribute to inducing the curvature of target membranes. Endophilins, diverging into A and B subgroups, are BAR and SH3 domain-containing proteins. They exert activities in membrane dynamic processes such as endocytosis, autophagy, mitochondrial dynamics, and permeabilization during apoptosis. Here, we report on the involvement of the third α-helix of the endophilin A BAR sequence in dimerization and identify leucine 215 as a key residue within a network of hydrophobic interactions stabilizing the entire BAR dimer interface. With the combination of N-terminal truncation retaining the high dimerization capacity of the third α-helices of endophilin A and leucine 215 substitution by aspartate (L215D), we demonstrate the essential role of BAR sequence-mediated dimerization on SH3 domain partnership. In comparison with wild type, full-length endophilin A2 heterodimers with one protomer bearing the L215D substitution exhibit very significant changes in membrane binding and shaping activities as well as a dramatic decrease of SH3 domain partnership. This suggests that subtle changes in the conformation and/or rigidity of the BAR domain impact both the control of membrane curvature and downstream binding to effectors. Finally, we show that expression, in mammalian cells, of endophilin A2 bearing the L215D substitution impairs the endocytic recycling of transferrin receptors. 相似文献
8.
Mullen TD Jenkins RW Clarke CJ Bielawski J Hannun YA Obeid LM 《The Journal of biological chemistry》2011,286(18):15929-15942
The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death. 相似文献
9.
Epsin and epsin-Related (epsinR) are multi-modular proteins that stimulate clathrin-coated vesicle formation. Epsin promotes endocytosis at the plasma membrane, and epsinR functions at the Golgi and early endosomes for trans-Golgi network/endosome vesicle trafficking. In Drosophila, endocytic epsin is known as Liquid facets, and it is essential specifically for Notch signaling. Here, by generating and analyzing loss-of-function mutants in the liquid facets-Related (lqfR) gene of Drosophila, we investigated the function of Golgi epsin in a multicellular context. We found that LqfR is indeed a Golgi protein, and that like liquid facets, lqfR is essential for Drosophila viability. In addition, primarily by analyzing mutant eye discs, we found that lqfR is required for cell proliferation, insulin-independent cell growth, and cell patterning, consistent with a role in one or several signaling pathways. Epsins in all organisms share an ENTH (epsin N-terminal homology) domain, which binds phosphoinositides enriched at the plasma membrane or the Golgi membrane. The epsinR ENTH domain is also the recognition element for particular cargos. By generating wild-type and mutant lqfR transgenes, we found that all apparent LqfR functions are independent of its ENTH domain. These results suggest that LqfR transports specific cargo critical to one or more signaling pathways, and lays the foundation for identifying those proteins. 相似文献
10.
Ding Y Zhang L Goodwin JS Wang Z Liu B Zhang J Fan GH 《Experimental cell research》2008,314(3):590-602
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection. 相似文献
11.
Zhu P Sang Y Xu H Zhao J Xu R Sun Y Xu T Wang X Chen L Feng H Li C Zhao S 《Biochemical and biophysical research communications》2005,331(4):938-946
Cellular adhesion plays important roles in a variety of biological processes. The ADAM family contains disintegrin-like and metalloproteinase-like domains which potentially have cell adhesion and protease activities. Recent studies suggest that the interaction between 14-3-3zeta and ADAM22cyt can regulate cell adhesion and spreading, therefore it has a potential role in neural development and function. 14-3-3 family has seven highly conserved members that regulate various cellular functions. Using yeast two-hybrid method, we identified that ADAM22cyt bound some other 14-3-3 family members. The interaction was further confirmed by in vitro protein pull-down assay and co-immunoprecipitation. We also found that the overexpression of exogenous ADAM22 in HEK293 cells could significantly enhance cell adhesion and spreading, compared with the truncated ADAM22 lack of 14-3-3 binding motifs. These results strongly demonstrated a functional role for ADAM22/14-3-3 in cell adhesion and spreading. 相似文献
12.
Valentine WJ Godwin VI Osborne DA Liu J Fujiwara Y Van Brocklyn J Bittman R Parrill AL Tigyi G 《The Journal of biological chemistry》2011,286(35):30513-30525
FTY720 phosphate (FTY720P) is a high potency agonist for all the endothelial differentiation gene family sphingosine 1-phosphate (S1P) receptors except S1P receptor subtype 2 (S1P(2)). To map the distinguishing features of S1P(2) ligand recognition, we applied a computational modeling-guided mutagenesis strategy that was based on the high degree of sequence homology between S1P(1) and S1P(2). S1P(2) point mutants of the ligand-binding pocket were characterized. The head group-interacting residues Arg3.28, Glu3.29, and Lys7.34 were essential for activation. Mutation of residues Ala3.32, Leu3.36, Val5.41, Phe6.44, Trp6.48, Ser7.42, and Ser7.46, predicted to interact with the S1P hydrophobic tail, impaired activation by S1P. Replacing individual or multiple residues in the ligand-binding pocket of S1P(2) with S1P(1) sequence did not impart activation by FTY720P. Chimeric S1P(1)/S1P(2) receptors were generated and characterized for activation by S1P or FTY720P. The S1P(2) chimera with S1P(1) sequence from the N terminus to transmembrane domain 2 (TM2) was activated by FTY720P, and the S1P(2)(IC1-TM2)(S1P1) domain insertion chimera showed S1P(1)-like activation. Twelve residues in this domain, distributed in four motifs a-d, differ between S1P(1) and S1P(2). Insertion of (78)RPMYY in motif b alone or simultaneous swapping of five other residues in motifs c and d from S1P(1) into S1P(2) introduced FTY720P responsiveness. Molecular dynamics calculations indicate that FTY720P binding selectivity is a function of the entropic contribution to the binding free energy rather than enthalpic contributions and that preferred agonists retain substantial flexibility when bound. After exposure to FTY720P, the S1P(2)(IC1-TM2)(S1P1) receptor recycled to the plasma membrane, indicating that additional structural elements are required for the selective degradative trafficking of S1P(1). 相似文献
13.
Bultema JJ Ambrosio AL Burek CL Di Pietro SM 《The Journal of biological chemistry》2012,287(23):19550-19563
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis. 相似文献
14.
Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance 总被引:1,自引:0,他引:1
Soontharapirakkul K Promden W Yamada N Kageyama H Incharoensakdi A Iwamoto-Kihara A Takabe T 《The Journal of biological chemistry》2011,286(12):10169-10176
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium that can grow in media of up to 3.0 m NaCl and pH 11. Here, we show that in addition to a typical H(+)-ATP synthase, Aphanothece halophytica contains a putative F(1)F(0)-type Na(+)-ATP synthase (ApNa(+)-ATPase) operon (ApNa(+)-atp). The operon consists of nine genes organized in the order of putative subunits β, ε, I, hypothetical protein, a, c, b, α, and γ. Homologous operons could also be found in some cyanobacteria such as Synechococcus sp. PCC 7002 and Acaryochloris marina MBIC11017. The ApNa(+)-atp operon was isolated from the A. halophytica genome and transferred into an Escherichia coli mutant DK8 (Δatp) deficient in ATP synthase. The inverted membrane vesicles of E. coli DK8 expressing ApNa(+)-ATPase exhibited Na(+)-dependent ATP hydrolysis activity, which was inhibited by monensin and tributyltin chloride, but not by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The Na(+) ion protected the inhibition of ApNa(+)-ATPase by N,N'-dicyclohexylcarbodiimide. The ATP synthesis activity was also observed using the Na(+)-loaded inverted membrane vesicles. Expression of the ApNa(+)-atp operon in the heterologous cyanobacterium Synechococcus sp. PCC 7942 showed its localization in the cytoplasmic membrane fractions and increased tolerance to salt stress. These results indicate that A. halophytica has additional Na(+)-dependent F(1)F(0)-ATPase in the cytoplasmic membrane playing a potential role in salt-stress tolerance. 相似文献
15.
16.
The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells 总被引:8,自引:0,他引:8
The Per1 gene is a core clock factor that plays an essential role in generating circadian rhythms. Recent data reveal that major biological pathways, including those critical to cell division, are under circadian control. We report here that Per1 provides an important link between the circadian system and the cell cycle system. Overexpression of Per1 sensitized human cancer cells to DNA damage-induced apoptosis; in contrast, inhibition of Per1 in similarly treated cells blunted apoptosis. The apoptotic phenotype was associated with altered expression of key cell cycle regulators. In addition, Per1 interacted with the checkpoint proteins ATM and Chk2. Ectopic expression of Per1 in human cancer cell lines led to significant growth reduction. Finally, Per1 levels were reduced in human cancer patient samples. Our results highlight the importance of circadian regulation to fundamental cellular functions and support the hypothesis that disruption of core clock genes may lead to cancer development. 相似文献
17.
Fibronectin combined with stem cell factor plays an important role in melanocyte proliferation,differentiation and migration in cultured mouse neural crest cells 总被引:15,自引:0,他引:15
Takano N Kawakami T Kawa Y Asano M Watabe H Ito M Soma Y Kubota Y Mizoguchi M 《Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society》2002,15(3):192-200
Stem cell factor (SCF) is essential to the migration and differentiation of melanocytes during embryogenesis because mutations in either the SCF gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Using a neural crest cell (NCC) primary culture system from wild-type mice, we previously demonstrated that KIT-positive and/or L-3, 4-dihydroxyphenylalanine (DOPA)-positive melanocyte precursors proliferate following the addition of SCF to the culture medium. Extracellular matrix (ECM) proteins are considered to play a role in the migration and differentiation of various cells including melanocytes. We cultured mouse NCCs in the presence of SCF in individual wells coated with ECM; fibronectin (FN), collagen I (CLI), chondroitin sulphate, or dermatan sulphate. More KIT-positive cells and DOPA-positive cells were detected in the presence of SCF on ECM-coated wells than on non-coated wells. A statistically significant increase in DOPA-positive cells was evident in FN and CLI wells. In contrast, in the absence of SCF, few DOPA-positive cells and KIT-positive cells were detected on either the ECM-coated or non-coated wells. We concluded that ECM affect melanocyte proliferation and development in the presence of SCF. To determine the key site of FN function, RGDS peptides in the FN sequence, which supports spreading of NCCs, were added to the NCC culture. The number of DOPA-positive cells decreased with RGDS concentration in a dose-dependent fashion. Immunohistochemical staining revealed the presence of integrin alpha5, a receptor of RGDS, in NCCs. These results suggest the RGDS domain of FN plays a contributory role as an active site in the induction of FN function in NCCs. In addition, we examined the effect of FN with SCF on the NCC migration by measuring cluster size, and found an increase in size following treatment with FN. 相似文献
18.
Down syndrome cell adhesion molecule (DSCAM) acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development. However, the signaling mechanisms of netrin-DSCAM remain unclear. Here we report that AMP-activated protein kinase (AMPK) interacts with DSCAM through its γ subunit, but does not interact with DCC (deleted in colorectal cancer), another major receptor for netrin-1. Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK. Both AMPK mutant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth. Together, these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth. Our study uncovers a previously unknown component, AMPK, in netrin-DSCAM signaling pathway. 相似文献
19.
Pierrick Moreau Kevin Moreau Amélie Segarra Delphine Tourbiez Marie-Agnès Travers David C Rubinsztein Tristan Renault 《Autophagy》2015,11(3):516-526
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. 相似文献
20.
Hui Yang Changwei Liu Joonas Jamsen Zhenxing Wu Yingjie Wang Jun Chen Li Zheng Binghui Shen 《Cell cycle (Georgetown, Tex.)》2012,11(24):4626-4632
The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish. 相似文献