首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc(2)155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc(2)155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc(2)155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc(2)155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria.  相似文献   

2.
3.
Only limited studies are available on the molecular-level biosynthesis of cyclic lipopeptides (cyclic and hybrid molecules consisting of peptide and fatty acid moieties) in filamentous fungi. Here, we identified and characterized biosynthetic genes of the cyclic lipopeptides, known as verlamelins. Only four genes, coding for non-ribosomal peptide synthetase (NRPS), fatty acid hydroxylase, thioesterase, and AMP-dependent ligase, were found to be involved in verlamelin biosynthesis by the analysis of corresponding gene knockouts. Surprisingly, no gene(s) coding for fatty acid synthase or polyketide synthase was present in the cluster, while verlamelin A/B contained a 5-hydroxytetradecanoic acid moiety. Precursor feeding experiment indicated that both fatty acid hydroxylase and thioesterase are involved to supply 5-hydroxytetradecanoic acid. The results suggested that 5-hydroxytetradecanoic acid was supplied from primary metabolism via fatty acid hydroxylase and loaded onto NRPS. Elongation of the peptide and final cyclization were accomplished by NRPS. The knowledge obtained through this study should provide new insight into fungal lipopeptide biosynthesis.  相似文献   

4.
5.
6.
7.
8.
Bacteria within the Mycobacterium avium complex are prominent in the environment and are a source of serious disseminated infections in patients with AIDS. Serovars of the M. avium complex are distinguished from all other mycobacteria and from one another by the presence of highly antigenic glycolipids, the glycopeptidolipids, on their surfaces. A genomic library of DNA from serovar 2 of the M. avium complex was constructed in the Escherichia coli-Mycobacterium shuttle cosmid, pYUB18, and used to clone and express in Mycobacterium smegmatis the genes responsible for the biosynthesis of the oligosaccharide segment of the M. avium serovar 2-specific glycopeptidolipid. The responsible gene cluster was mapped to a 22- to 27-kb functional region of the M. avium genome. The recombinant glycolipid was also isolated by high-pressure liquid chromatography and chemically characterized, by gas chromatography-mass spectrometry and fast atom bombardment-mass spectrometry, to demonstrate that the lipopeptide core originated in M. smegmatis, whereas the oligosaccharide segment arose from the cloned M. avium genes. This first-time demonstration of the cloning and expression, in a nonpathogenic mycobacterium, of the genes encoding complex cell wall glycoconjugates from a pathogenic mycobacterium presents a new approach for studying the role of such products in disease processes.  相似文献   

9.
During carbon-starvation-induced entry into stationary phase, Escherichia coli cells exhibit a variety of physiological and morphological changes that ensure survival during periods of prolonged starvation. Induction of 30-50 proteins of mostly unknown function has been shown under these conditions. In an attempt to identify C-starvation-regulated genes we isolated and characterized chromosomal C-starvation-induced csi::lacZ fusions using the lambda placMu system. One operon fusion (csi2::lacZ) has been studied in detail. csi2::lacZ was induced during transition from exponential to stationary phase and was negatively regulated by cAMP. It was mapped at 59 min on the E. coli chromosome and conferred a pleiotropic phenotype. As demonstrated by two-dimensional gel electrophoresis, cells carrying csi2::lacZ did not synthesize at least 16 proteins present in an isogenic csi2+ strain. Cells containing csi2::lacZ or csi2::Tn10 did not produce glycogen, did not develop thermotolerance and H2O2 resistance, and did not induce a stationary-phase-specific acidic phosphatase (AppA) as well as another csi fusion (csi5::lacZ). Moreover, they died off much more rapidly than wild-type cells during prolonged starvation. We conclude that csi2::lacZ defines a regulatory gene of central importanc e for stationary phase E. coli cells. These results and the cloning of the wild-type gene corresponding to csi2 demonstrated that the csi2 locus is allelic with the previously identified regulatory genes katF and appR. The katF sequence indicated that its gene product is a novel sigma factor supposed to regulate expression of catalase HPII and exonuclease III (Mulvey and Loewen, 1989). We suggest that this novel sigma subunit of RNA polymerase defined by csi2/katF/appR is a central early regulator of a large starvation/stationary phase regulon in E. coli and propose 'rpoS' ('sigma S') as appropriate designations.  相似文献   

10.
Human T-cell leukemia virus type I has a unique sequence, pX, between env and the 3' long terminal repeat (LTR). One of its products, p40, activates gene expression directed by the LTR in a trans-acting manner. We have analysed the mechanism of this trans-activation mediated by p40 in human T cells co-transfected with a plasmid expressing p40 using the transient CAT gene expression. We identified two distinct elements in the LTR which are involved in maximum gene expression. The first was present in a 230-bp fragment upstream from TATA box in the U3 region and behaved as a classical enhancer. This region was also shown to be responsible for trans-activation by p40. This element alone together with functional p40 could direct the gene expression at only approximately 10% of the level achieved by the complete LTR and p40. The second element was present within a 300-bp fragment downstream from the RNA start site and profoundly enhanced the gene expression in a way independent from trans-activation mechanism. This enhancement was observed only when the element was located immediately downstream from the RNA start site without orientation preference. These two elements participate independently in the enhancement of gene expression.  相似文献   

11.
12.
13.
The isolation of elements driving high-level expression of foreign genes in mycobacteria would significantly aid characterization of mycobacterial antigens and recombinant vaccine development. Mycobacterium smegmatis is a widely employed host for recombinant mycobacterial gene expression. This report describes the identification of strong promoter elements of M. smegmatis. Fluorescence-activated cell sorting was employed to isolate DNA fragments permitting high-level expression of the Aequorea victoria green fluorescent protein within recombinant M. smegmatis. Ten postulated M. smegmatis promoters were identified which showed activity two to six times that of the strong beta-lactamase promoter of Mycobacterium fortuitum. The utility of one of these promoters for the over-expression of foreign genes in mycobacteria was demonstrated by the efficient purification of the Mycobacterium leprae 35-kDa antigen from recombinant M. smegmatis.  相似文献   

14.
15.
16.
17.
Torulene, a C40 carotene, is the precursor of the end product of the Neurospora carotenoid pathway, the C35 xanthophyll neurosporaxanthin. Torulene is synthesized by the enzymes AL-2 and AL-1 from the precursor geranylgeranyl diphosphate and then cleaved by an unknown enzyme into the C35 apocarotenoid. In general, carotenoid cleavage reactions are catalyzed by carotenoid oxygenases. Using protein data bases, we identified two putative carotenoid oxygenases in Neurospora, named here CAO-1 and CAO-2. A search for novel mutants of the carotenoid pathway in this fungus allowed the identification of two torulene-accumulating strains, lacking neurosporaxanthin. Sequencing of the cao-2 gene in these strains revealed severe mutations, pointing to a role of CAO-2 in torulene cleavage. This was further supported by the identical phenotype found upon targeted disruption of cao-2. The biological function was confirmed by in vitro assays using the purified enzyme, which cleaved torulene to produce β-apo-4′-carotenal, the corresponding aldehyde of neurosporaxanthin. The specificity of CAO-2 was shown by the lack of γ-carotene-cleaving activity in vitro. As predicted for a structural gene of the carotenoid pathway, cao-2 mRNA was induced by light in a WC-1 and WC-2 dependent manner. Our data demonstrate that CAO-2 is the enzyme responsible for the oxidative cleavage of torulene in the neurosporaxanthin biosynthetic pathway.  相似文献   

18.
The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath)   总被引:13,自引:0,他引:13  
Methane is oxidised to methanol in methanotrophic bacteria by the enzyme methane monooxygenase (MMO). Methylococcus capsulatus (Bath) produces a soluble MMO which oxidises a range of aliphatic and aromatic compounds with potential for commercial exploitation. This multicomponent enzyme has been extensively characterised and biochemical data have been used to identify a 12-kb fragment of Methylococcus DNA carrying the structural genes mmoY and mmoZ, coding for the beta- and gamma-subunits of MMO component A, the methane-binding protein. We now report the complete nucleotide (nt) sequence of mmoX, the gene encoding the alpha-subunit of component A which is found to be 5' to mmoY and mmoZ. We also report the complete nt sequence of mmoC which encodes component C, the iron-sulfur flavoprotein of MMO, the N terminus of which is significantly homologous with spinach ferredoxin. The mmo structural genes are clustered within a 7-kb region and are closely linked to two small open reading frames of unknown function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号