共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterologous protein secretion in Lactococcus lactis is enhanced by the Bacillus subtilis chaperone-like protein PrsA 总被引:1,自引:0,他引:1
Lindholm A Ellmén U Tolonen-Martikainen M Palva A 《Applied microbiology and biotechnology》2006,73(4):904-914
The Bacillus subtilis lipoprotein PrsA enhances the yield of several homologous and heterologous exported proteins in B. subtilis by being involved in the posttranslocational stage of the secretion process. In this work, we have studied the effect of B. subtilis PrsA on the secretion of Bacillus amyloliquefaciens α-amylase (AmyQ), a target protein for PrsA, and Bacillus licheniformis penicillinase (PenP) a nontarget protein for PrsA, in Lactococcus lactis. Two compatible plasmids were constructed and introduced into L. lactis strain NZ9000: one high copy plasmid, expressing the AmyQ gene (amyQ) or the PenP gene (penP), and one low copy plasmid, expressing the PrsA encoding gene (prsA). When amyQ and prsA were simultaneously expressed under the nisin-inducible promoter P
nisA
, Western blotting experiments revealed a 15- to 20-fold increase in the total yield of AmyQ and a sixfold increase in secreted AmyQ activity, compared to a control strain lacking prsA. When expressed under the same induction conditions, PrsA had no effect on the secretion or total yield of PenP. These results show that the secretion yield of some heterologous proteins can be significantly increased in L. lactis when coproduced with the B. subtilis PrsA protein. 相似文献
2.
3.
枯草芽孢杆菌蛋白质分泌机制研究进展 总被引:8,自引:2,他引:8
综述了枯草芽孢杆菌不同蛋白质分泌机制,重点讨论了大多数细菌蛋白分泌的Sec途径,包括Sec途径的信号肽,信号肽酶,SecYEG通道,与分泌有关的各种细胞因子以及Sec途径的限制因素,此外还简要讨论了Tat途径,该途径能够转运折叠迅速或归密的蛋白质。 相似文献
4.
Voigt B Antelmann H Albrecht D Ehrenreich A Maurer KH Evers S Gottschalk G van Dijl JM Schweder T Hecker M 《Journal of molecular microbiology and biotechnology》2009,16(1-2):53-68
The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can secrete numerous proteins into the surrounding medium enabling them to use high-molecular-weight substances, which are abundant in soils, as nutrient sources. The availability of complete genome sequences allows for the prediction of the proteins containing signals for secretion into the extracellular milieu and also of the proteins which form the secretion machinery needed for protein translocation through the cytoplasmic membrane. To confirm the predicted subcellular localization of proteins, proteomics is the best choice. The extracellular proteomes of B. subtilis and B. licheniformis have been analyzed under different growth conditions allowing comparisons of the extracellular proteomes and conclusions regarding similarities and differences of the protein secretion mechanisms between the two species. 相似文献
5.
The membrane-bound cell division protein DivIB is localized to the division site in Bacillus subtilis 总被引:1,自引:1,他引:1
The cell division gene divIB of Bacillus subtilis is essential for the normal rate of growth and division. The gene product, DivIB, is a membrane-bound protein in which the bulk of the protein (at the C-terminal end) is on the exterior surface of the cell membrane. DivIB is involved in the early stages of septum formation, but its exact role in cell division is unknown. To gain more information about the mode of action of DivIB in septum formation, we determined the location of DivIB within the cell membrane using immunofluorescence. This immunolocalization approach established that DivIB becomes localized to the division site before visible septation and remains localized to this site throughout the division process. Various DivIB immunostaining patterns were observed in immunofluorescence experiments and, together with cell length and nucleoid distance measurements, have allowed us to propose two models to describe DivIB localization during the cell cycle. 相似文献
6.
Chastukhina IB Sharipova MR Gabdrakhmanova LA Balaban NP Kostrov SV Rudenskaia GN Leshchinskaia IB 《Mikrobiologiia》2005,74(1):39-47
We studied the biosynthesis of Bacillus intermedius glutamyl endopeptidase in the recombinant Bacillus subtilis strain AJ73 delta58.21 during the stationary growth phase. We optimized the composition of the culture medium to favor effective enzyme production during the stationary growth phase, and found that the nutritional requirements for glutamyl endopeptidase synthesis were different in the stationary phase and growth retardation phase. Proteinase accumulation was activated by complex organic substrates (casein and gelatin). During final stages of the culture growth, the enzyme production was stimulated by Ca2+, Mn2+, and Co2+ and inhibited by Zn2+, Fe2+, and Cu2+. The synthesis of glutamyl endopeptidase in the late stationary phase was not inhibited by glucose, unlike that in the trophophase during proliferation. We conclude that the regulatory mechanisms of proteinase synthesis during vegetative growth and sporulation are different. 相似文献
7.
Mormeneo M Andrés I Bofill C Díaz P Zueco J 《Applied microbiology and biotechnology》2008,80(3):437-445
Both the secretion and the cell surface display of Bacillus subtilis lipase A (Lip A) in Saccharomyces cerevisiae was investigated using different domains of the cell wall protein Pir4 as translational fusion partners. LipA gene minus its leader peptide was fused inframe in two places of PIR4 to achieve cell wall targeting, or substituting most of the PIR4 sequence, after the signal peptide and the Kex2 processed subunit I of Pir4 to achieve secretion to the growth medium. Expression of the recombinant fusion proteins was investigated in a standard and a glycosylation-deficient strain of S. cerevisiae, grown in selective or rich medium. Fusion proteins intended to be retained at the cell wall were secreted to the growth medium, most likely as result of the degradation of the Pir4 moiety containing the cell wall retention domain, giving low levels of lipase activity. However, the fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 400 IU of lipase activity per milliliter of cell supernatant. This is, to our knowledge, the first report of the efficient production, as a secreted protein, of lipase A of B. subtilis in baker's yeast. 相似文献
8.
Jongbloed JD Antelmann H Hecker M Nijland R Bron S Airaksinen U Pries F Quax WJ van Dijl JM Braun PG 《The Journal of biological chemistry》2002,277(46):44068-44078
The availability of the complete genome sequence of Bacillus subtilis has allowed the prediction of all exported proteins of this Gram-positive eubacterium. Recently, approximately 180 secretory and 114 lipoprotein signal peptides were predicted to direct protein export from the cytoplasm. Whereas most exported proteins appear to use the Sec pathway, 69 of these proteins could potentially use the Tat pathway, as their signal peptides contain RR- or KR-motifs. In the present studies, proteomic techniques were applied to verify how many extracellular B. subtilis proteins follow the Tat pathway. Strikingly, the extracellular accumulation of 13 proteins with potential RR/KR-signal peptides was Tat-independent, showing that their RR/KR-motifs are not recognized by the Tat machinery. In fact, only the phosphodiesterase PhoD was shown to be secreted in a strictly Tat-dependent manner. Sodium azide-inhibition of SecA strongly affected the extracellular appearance of de novo synthesized proteins, including the lipase LipA and two other proteins with predicted RR/KR-signal peptides. The SecA-dependent export of pre-LipA is particularly remarkable, because its RR-signal peptide conforms well to stringent criteria for the prediction of Tat-dependent export in Escherichia coli. Taken together, our observations show that the Tat pathway makes a highly selective contribution to the extracellular proteome of B. subtilis. 相似文献
9.
RNA synthesis was studied in Bacillus subtilis Cgr4 grown in the mineral sporulation medium enriched with glucose up to 2% and amino acids up to 1%. To study mRNA synthesis, a method of transfer of the 3H-uridine pulse-labeled culture to the supernatant of physiologically identical, not labeled culture, followed by further incubation was used, the amount of 3H-uridine in the supernatant as well as in cells being measured. RNA was also analysed electrophoretically and distribution of the label among the fractions was determined. It is shown that mRNA synthesized in the logarithmic phase degrades up to 12% on the 2nd hour of growth during 10 min; the mRNA in the stationary phase is stable on the 7th hour of growth; no degradation is observed in the course of 2-3 hours. The beginning of degradation coincides in time with secondary induction of the synthesis of serine proteases and with the onset of sharp decrease in incorporation of 3H-uridine in RNA as well as with induction of spore morphogenesis. On the basis of electrophoretical analysis of pulse-labeled RNA, it was demonstrated that, prior to the transfer, labeled uridine was included and preserved in RNA fraction for 2-3 hours after the transfer, this fraction corresponding in mobility with mRNA in polyacrylamide gel. The following conclusion may be drawn: stable mRNAs are synthesized in the stationary phase and may be used for the translation of extracellular serine protease. 相似文献
10.
11.
Martin Tangney 《Biotechnology letters》1995,17(2):129-134
Summary The minicell producing strain Bacillus subtilis IA292 was transformed with plasmids encoding the Bacillus enzymes -glucanase, -amylase and neutral protease. Purified minicells were shown to be free of detectable proteolytic activity. Minicells containing plasmids were found to synthesise all three enzymes internally, but evidence of secretion was only observed in the unique case of neutral protease secretion by minicells prepared from cultures grown in BHI medium. 相似文献
12.
The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion 总被引:5,自引:1,他引:5
Mutations of the prsA gene of Bacillus subtilis have indicated that the gene is involved in protein secretion and it encodes a novel component of the cellular secretion machinery. We now demonstrate that the gene product is a membrane-associated lipoprotein, presumably bound to the outer face of the cytoplasmic membrane. Experiments to inactivate the prsA gene with insertions indicated that it is indispensable for viability. The cellular level of PrsA protein was shown to be decreased in prsA mutants with decreased level of exoproteins, consistent with an essential function in protein secretion. An increased amount of cellular PrsA protein was introduced by Increasing the copy number of prsA in B. subtilis. This enhanced, from six- to twofold, the secretion of α-amylases and a protease in strains, which expressed high levels of these exoenzymes. This suggests that PrsA protein is the rate-limiting component of the secretion machinery, a finding that is of considerable biotechnological interest. 相似文献
13.
In addition to one hypothetical viral sequence from Bacteriophage KVP40, the PfamA family of unknown function DUF458 (Pfam Accession No. PF04308) encompasses several uncharacterized bacterial proteins including Bacillus subtilis YkuK protein. Using Meta-BASIC, a highly sensitive method for detection of distant similarity between proteins, we assign DUF458 family members to the ribonuclease H-like (RNase H-like) superfamily. DUF458 sequences maintain all core secondary structure elements of RNase H-like fold and share several conserved, presumably active site residues with RNase HI, including an invariant DDE motif. In addition to providing a model structure for a previously uncharacterized protein family, this finding suggests that DUF458 proteins function as nucleases. The unusual phyletic pattern, together with a presence of DUF458 in several thermophilic organisms, may suggest a potential role of these proteins in DNA repair in stressful conditions such as an extreme heat or other stress that causes spore formation. 相似文献
14.
15.
The redox potential "jump" recorded earlier for aerobic Escherichia coli and Bacillus subtilis cultures passing to the stationary phase was shown to result from a rise in the content of SH-compounds in the medium and on the cell surface. The effect was absent from anaerobic cultures as well as aerobic E. coli cells treated with the protonophore CICCP. Apparently, the elevated content of SH-compounds outside the cell upon starvation is part of the process which leads to a shift in the ratio between low-molecular-mass thiols and disulfides (towards disulfides inside the cell and towards thiols outside the cell) and is associated with a drop in the intracellular pH. Therefore, the entire metabolism of the cell can change as a result of reactions with the SH-groups of functionally significant compounds when the cell enters the stationary phase upon starvation. 相似文献
16.
17.
18.
Protein translocation via the twin arginine translocation (TAT) pathway is characterized by the translocation of prefolded proteins across the hydrophobic lipid bilayer of the membrane. In Bacillus subtilis, two different Tat translocases are involved in this process, and both display different substrate specificities: PhoD is secreted via TatAdCd, whereas YwbN is secreted via TatAyCy. It was previously assumed that both TatAy and TatCy are essential for the translocation of the YwbN precursor. Through complementation studies, we now show that TatAy can be functionally replaced by TatAd when the latter is offered to the cells in excess amounts. Moreover, under conditions of overproduction, TatAdCd, in contrast to TatAyCy, shows an increased tolerance toward the acceptance of various Tat-dependent proteins. 相似文献
19.
Molecular Genetics and Genomics - The relationship between sigma (σ) and delta (δ) factors of Bacillus subtilis RNA polymerase has been analyzed during initiation of RNA synthesis. When... 相似文献
20.
Zanen G Antelmann H Westers H Hecker M van Dijl JM Quax WJ 《Journal of bacteriology》2004,186(17):5956-5960
Bacillus subtilis contains three proteins of the signal recognition particle-GTPase family known as Ffh, FtsY, and FlhF. Here we show that FlhF is dispensable for protein secretion, unlike Ffh and FtsY. Although flhF is located in the fla/che operon, B. subtilis 168 flhF mutant cells assemble flagella and are motile. 相似文献