首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A "gene-island" sequencing strategy has been developed that expedites the targeted acquisition of orthologous gene sequences from related species for comparative genome analysis. A 152-kb bacterial artificial chromosome (BAC) clone from sorghum (Sorghum bicolor) encoding phytochrome A (PHYA) was fully sequenced, revealing 16 open reading frames with a gene density similar to many regions of the rice (Oryza sativa) genome. The sequences of genes in the orthologous region of the maize (Zea mays) and rice genomes were obtained using the gene-island sequencing method. BAC clones containing the orthologous maize and rice PHYA genes were identified, sheared, subcloned, and probed with the sorghum PHYA-containing BAC DNA. Sequence analysis revealed that approximately 75% of the cross-hybridizing subclones contained sequences orthologous to those within the sorghum PHYA BAC and less than 25% contained repetitive and/or BAC vector DNA sequences. The complete sequence of four genes, including up to 1 kb of their promoter regions, was identified in the maize PHYA BAC. Nine orthologous gene sequences were identified in the rice PHYA BAC. Sequence comparison of the orthologous sorghum and maize genes aided in the identification of exons and conserved regulatory sequences flanking each open reading frame. Within genomic regions where micro-colinearity of genes is absolutely conserved, gene-island sequencing is a particularly useful tool for comparative analysis of genomes between related species.  相似文献   

2.
Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory.  相似文献   

3.
4.
Whole genome duplication (WGD) and subsequent evolution of gene pairs have been shown to have shaped the present day genomes of most, if not all, plants and to have played an essential role in the evolution of many eukaryotic genomes. Analysis of the rice (Oryza sativa ssp. japonica) genome sequence suggested an ancestral WGD ~50-70 Ma common to all cereals and a segmental duplication between chromosomes 11 and 12 as recently as 5 Ma. More recent studies based on coding sequences have demonstrated that gene conversion is responsible for the high sequence conservation which suggested such a recent duplication. We previously showed that gene conversion has been a recurrent process throughout the Oryza genus and in closely related species and that orthologous duplicated regions are also highly conserved in other cereal genomes. We have extended these studies to compare megabase regions of genomic (coding and noncoding) sequences between two cultivated (O. sativa, Oryza glaberrima) and one wild (Oryza brachyantha) rice species using a novel approach of topological incongruency. The high levels of intraspecies conservation of both gene and nongene sequences, particularly in O. brachyantha, indicate long-range conversion events less than 4 Ma in all three species. These observations demonstrate megabase-scale conversion initiated within a highly rearranged region located at ~2.1 Mb from the chromosome termini and emphasize the importance of gene conversion in cereal genome evolution.  相似文献   

5.
Human gene rb related to apoptosis was used as the probe for the Southern blot hybridization of the genomic DNA in both maize ( Zea mays L. ) and rice ( Oryza sativa L. ). The results indicated that the homologous sequences of rb were presented in the two species. The physical location of the rb homologous sequences was also carried out in maize chromosomes by fluorescence in sim hybridization (FISH). The gene rb was hybridized onto the long arms of the chromosomes 5 and 6, and the short ann of the chromosome 8. The detection rates of FISH were 7.58%, 16.16% and 10.10%, and percent distances from centromere to the detection sites were 86.17 + 3.22, 94.10 + 2.59 and 92.47 + 2.33 respectively. These results provided important clues to further research of plant apoptosis genes.  相似文献   

6.
通过对水稻 (OryzasativaL .) 4号染色体一段 32 3kb的序列测定和分析 ,在其中 10 8kb的区域内发现了一个由 14个编码S位点相关的受体样蛋白激酶 (SRK)基因组成的基因簇。RT_PCR实验证明了这 14个基因中有 9个基因表达 ,并且这 9个基因有不同的表达模式 :其中 2个基因主要在生殖器官中表达 ,而另外 7个基因在水稻的营养和生殖器官中均有表达。对这些基因的预测的氨基酸序列进行分析表明他们的细胞外受体部分均和甘蓝的SLG蛋白高度同源 ,而细胞内的激酶区都包含有丝氨酸 /苏氨酸激酶中特异的氨基酸。  相似文献   

7.
Comparative analyses of genome structure and sequence of closely related species have yielded insights into the evolution and function of plant genomes. A total of 103,844 BAC end sequences delegated -73.8 Mb of O. officinalis that belongs to the CC genome type of the rice genus Oryza were obtained and compared with the genome sequences office cultivar, O. sativa ssp.japonica cv. Nipponbare. We found that more than 45% of O. officinalis genome consists of repeat sequences, which is higher than that of Nipponbare cultivar. To further investigate the evolutionary divergence of AA and CC genomes, two BAC-contigs of O. officinalis were compared with the collinear genomic regions of Nipponbare. Of 57 genes predicted in the AA genome orthologous regions, 39 had orthologs in the regions of the CC genome. Alignment of the orthologous regions indicated that the CC genome has undergone expansion in both genic and intergenic regions through primarily retroelement insertion. Particularly, the density of RNA transposable elements was 17.95% and 1.78% in O. officinalis and O. sativa, respectively. This explains why the orthologous region is about 100 kb longer in the CC genome in comparison to the AA genome.  相似文献   

8.
Human chromosome 11p15.3 is associated with chromosome aberrations in the Beckwith Wiedemann Syndrome and implicated in the pathogenesis of different tumor types including lung cancer and leukemias. To date, only single tumor-relevant genes with linkage to this region (e.g. LMO1) have been found suggesting that this region may harbor additional potential disease associated genes. Although this genomic area has been studied for years, the exact order of genes/chromosome markers between D11S572 and the WEE1 gene locus remained unclear. Using the FISH technique and PAC clones of the flanking markers we determined the order of the genomic markers. Based on these clones we established a PAC contig of the respective region. To analyse the chromosome area in detail the synteny of the orthologous region on distal mouse chromosome 7 was determined and a corresponding mouse clone contig established, proving the conserved order of the genes and markers in both species: "cen-WEE1-D11S2043-ZNF143-RANBP7-CEGF1- ST5-D11S932-LMO1-D11S572-TUB-tel", with inverted order of the murine genes with respect to the telomere/centromere orientation. The region covered by these contigs comprises roughly 1.6 MB in human as well as in mouse. The genomic sequence of the two subregions (around WEE1 and LMO1) in both species was determined using a shotgun sequencing strategy. Comparative sequence analysis techniques demonstrate that the content of repetitive elements seems to decline from centromere to telomere (52.6% to 34.5%) in human and in the corresponding murine region from telomere to centromere (41.87% to 27.82%). Genomic organisation of the regions around WEE1 and LMO1 was conserved, although the length of gene regions varied between the species in an unpredictable ratio. CpG islands were found conserved in putative promoter regions of the known genes but also in regions which so far have not been described as harboring expressed sequences.  相似文献   

9.
A comparative physical map of the AA genome (Oryza sativa) and the BB genome (O. punctata) was constructed by aligning a physical map of O. punctata, deduced from 63,942 BAC end sequences (BESs) and 34,224 fingerprints, onto the O. sativa genome sequence. The level of conservation of each chromosome between the two species was determined by calculating a ratio of BES alignments. The alignment result suggests more divergence of intergenic and repeat regions in comparison to gene-rich regions. Further, this characteristic enabled localization of heterochromatic and euchromatic regions for each chromosome of both species. The alignment identified 16 locations containing expansions, contractions, inversions, and transpositions. By aligning 40% of the punctata BES on the map, 87% of the punctata FPC map covered 98% of the O. sativa genome sequence. The genome size of O. punctata was estimated to be 8% larger than that of O. sativa with individual chromosome differences of 1.5-16.5%. The sum of expansions and contractions observed in regions >500 kb were similar, suggesting that most of the contractions/expansions contributing to the genome size difference between the two species are small, thus preserving the macro-collinearity between these species, which diverged approximately 2 million years ago.  相似文献   

10.
Polymorphic microsatellites have been developed in the vicinity of nine genes on bovine chromosome (BTA) 24, all orthologous to genes on human chromosome (HSA) 18. The microsatellites have been isolated from bacterial and yeast artificial chromosome clones containing the genes. A linkage map was developed including these polymorphic markers and four anonymous, published microsatellites. Yeast artificial chromosomes containing six of these genes have also been mapped using fluorescent in situ hybridization (FISH), thereby tying the linkage map together with the physical map of BTA24. Comparing gene location on HSA18 and BTA24 identifies four regions of conserved gene order, each containing at least two genes. These genes identify six regions of conserved order between human and mouse, two more than in the human-bovine comparison. The breakpoints between regions of conserved order for human-bovine are also breakpoints in the human-mouse comparison. The centromere identifies a fifth conserved region if the BTA24 centromere is orthologous with the HSA18 centromere. Received: 17 September 1998 / Accepted: 4 December 1998  相似文献   

11.
Zhang W  Yi C  Bao W  Liu B  Cui J  Yu H  Cao X  Gu M  Liu M  Cheng Z 《Plant physiology》2005,139(1):306-315
Centromeres are required for faithful segregation of chromosomes in cell division. It is not clear what kind of sequences act as functional centromeres and how centromere sequences are organized in Oryza punctata, a BB genome species. In this study, we found that the CentO centromeric satellites in O. punctata share high homology with the CentO satellites in O. sativa. The O. punctata centromeres are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons. Immunostaining with an antibody specific to CENH3 indicates that the 165-bp CentO satellites are the major component for functional centromeres. Moreover, both strands of CentO satellites are highly methylated and transcribed and produce small interfering RNA, which may be important for the maintenance of centromeric heterochromatin and centromere function.  相似文献   

12.
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.  相似文献   

13.
The genomic sequences derived from rice centromeric regions were analyzed to facilitate the comprehensive understanding of the rice genome. A rice centromere-specific satellite sequence, RCS2/TrsD/CentO, was used to screen P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) genomic libraries derived from Oryza sativa L. ssp. japonica cultivar Nipponbare. Physical maps of the centromeric regions were constructed by DNA fingerprinting methods and the aligned clones were analyzed by end sequencing. BLAST analysis revealed the composition of genes, centromeric satellites and other repetitive elements, such as RIRE7/CRR, RIRE8, Squiq, Anaconda, CACTA and miniature inverted-repeat transposable elements. Fiber-fluorescent in situ hybridization analysis also indicated the presence of distinct clusters of RCS2/TrsD/CentO satellite interspersed with other elements, instead of a long homogeneous region. Several expressed genes, sequences representative of ancestral organellar insertions, relatively long simple sequence repeats (SSRs), and sequences corresponding to 5S and 45S ribosomal RNA genes were also identified. Thirty-one gene sequences showed high-similarity to rice full-length cDNA sequences that had not been matched to the published rice genome sequence in silico. These results suggest the presence of expressed genes within and around the clusters of RCS2/TrsD/CentO satellites in unsequenced centromeric regions of the rice chromosomes.  相似文献   

14.
The condensed centromeric regions of higher eukaryotic chromosomes contain satellite sequences, transposons and retroelements, as well as transcribed genes that perform a variety of functions. These chromosomal domains nucleate kinetochores, mediate sister chromatid cohesion and inhibit recombination, yet their characterization has often lagged behind that of chromosome arms. Here, we describe a whole-genome fractionation technique that rapidly identifies bacterial artificial chromosome (BAC) clones derived from plant centromeric regions. This approach, which relies on hybridization of methylated genomic DNA, revealed BACs that correspond to the genetically mapped and sequenced Arabidopsis thaliana centromeric regions. Extending this method to other species in the Brassicaceae family identified centromere-linked clones and provided genome-wide estimates of methylated DNA abundance. Sequencing these clones will elucidate the changes that occur during plant centromere evolution. This genomic fractionation technique could identify centromeric DNA in genomes with similar methylation and repetitive DNA content, including those from crops and mammals.  相似文献   

15.
The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.  相似文献   

16.
Centromeres are composed of long arrays of satellite repeats in most multicellular eukaryotes investigated to date. The satellite repeat–based centromeres are believed to have evolved from “neocentromeres” that originally contained only single- or low-copy sequences. However, the emergence and evolution of the satellite repeats in centromeres has been elusive. Potato (Solanum tuberosum) provides a model system for studying centromere evolution because each of its 12 centromeres contains distinct DNA sequences, allowing comparative analysis of homoeologous centromeres from related species. We conducted genome-wide analysis of the centromeric sequences in Solanum verrucosum, a wild species closely related to potato. Unambiguous homoeologous centromeric sequences were detected in only a single centromere (Cen9) between the two species. Four centromeres (Cen2, Cen4, Cen7, and Cen10) in S. verrucosum contained distinct satellite repeats that were amplified from retrotransposon-related sequences. Strikingly, the same four centromeres in potato contain either different satellite repeats (Cen2 and Cen7) or exclusively single- and low-copy sequences (Cen4 and Cen10). Our sequence comparison of five homoeologous centromeres in two Solanum species reveals rapid divergence of centromeric sequences among closely related species. We propose that centromeric satellite repeats undergo boom-bust cycles before a favorable repeat is fixed in the population.  相似文献   

17.
Colinearity of a large region from barley (Hordeum vulgare) chromosome 5H and rice (Oryza sativa) chromosome 3 has been demonstrated by mapping of several common restriction fragment-length polymorphism clones on both regions. One of these clones, WG644, was hybridized to rice and barley bacterial artificial chromosome (BAC) libraries to select homologous clones. One BAC from each species with the largest overlapping segment was selected by fingerprinting and blot hybridization with three additional restriction fragment-length polymorphism clones. The complete barley BAC 635P2 and a 50-kb segment of the rice BAC 36I5 were completely sequenced. A comparison of the rice and barley DNA sequences revealed the presence of four conserved regions, containing four predicted genes. The four genes are in the same orientation in rice, but the second gene is in inverted orientation in barley. The fourth gene is duplicated in tandem in barley but not in rice. Comparison of the homeologous barley and rice sequences assisted the gene identification process and helped determine individual gene structures. General gene structure (exon number, size, and location) was largely conserved between rice and barley and to a lesser extent with homologous genes in Arabidopsis. Colinearity of these four genes is not conserved in Arabidopsis compared with the two grass species. Extensive similarity was not found between the rice and barley sequences other than within the exons of the structural genes, and short stretches of homology in the promoters and 3' untranslated regions. The larger distances between the first three genes in barley compared with rice are explained by the insertion of different transposable retroelements.  相似文献   

18.
The barley mutant allele sdw3 confers a gibberellin-insensitive, semi-dwarf phenotype with potential for breeding of new semi-dwarfed barley cultivars. Towards map-based cloning, sdw3 was delimited by high-resolution genetic mapping to a 0.04 cM interval in a “cold spot” of recombination of the proximal region of the short arm of barley chromosome 2H. Extensive synteny between the barley Sdw3 locus (Hvu_sdw3) and the orthologous regions (Osa_sdw3, Sbi_sdw3, Bsy_sdw3) of three other grass species (Oryza sativa, Sorghum bicolor, Brachypodium sylvaticum) allowed for efficient synteny-based marker saturation in the target interval. Comparative sequence analysis revealed colinearity for 23 out of the 38, 35, and 29 genes identified in Brachypodium, rice, and Sorghum, respectively. Markers co-segregating with Hvu_sdw3 were generated from two of these genes. Initial attempts at chromosome walking in barley were performed with seven orthologous gene probes which were delimiting physical distances of 223, 123, and 127 kb in Brachypodium, rice, and Sorghum, respectively. Six non-overlapping small bacterial artificial chromosome (BAC) clone contigs (cumulative length of 670 kb) were obtained, which indicated a considerably larger physical size of Hvu_sdw3. Low-pass sequencing of selected BAC clones from these barley contigs exhibited a substantially lower gene frequency per physical distance and the presence of additional non-colinear genes. Four candidate genes for sdw3 were identified within barley BAC sequences that either co-segregated with the gene sdw3 or were located adjacent to these co-segregating genes. Identification of genic sequences in the sdw3 context provides tools for marker-assisted selection. Eventual identification of the actual gene will contribute new information for a basic understanding of the mechanisms underlying growth regulation in barley.  相似文献   

19.
20.
Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25‐Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, ‘Kasalath’ (Kas‐Cen8). Analysis of repetitive sequences in Kas‐Cen8 led to the identification of 222 long terminal repeat (LTR)‐retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas‐Cen8 sequence with that of japonica rice ‘Nipponbare’ (Nip‐Cen8) revealed that about 66.8% of the Kas‐Cen8 sequence was collinear with that of Nip‐Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR‐retrotransposon elements in ‘Kasalath’ had orthologs in ‘Nipponbare’, thus reflecting recent proliferation of a considerable number of LTR‐retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR‐retrotransposons between the two Cen8 regions revealed variations between ‘Kasalath’ and ‘Nipponbare’ in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR‐retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号