首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent developments in microarrays technology enable researchers to study simultaneously the expression of thousands of genes from one cell line or tissue sample. This new technology is often used to assess changes in mRNA expression upon a specified transfection for a cell line in order to identify target genes. For such experiments, the range of differential expression is moderate, and teasing out the modified genes is challenging and calls for detailed modeling. The aim of this paper is to propose a methodological framework for studies that investigate differential gene expression through microarrays technology that is based on a fully Bayesian mixture approach (Richardson and Green, 1997). A case study that investigated those genes that were differentially expressed in two cell lines (normal and modified by a gene transfection) is provided to illustrate the performance and usefulness of this approach.  相似文献   

2.
When modeling time course microarray data special interest may reside in identifying time frames in which gene expression levels follow a monotonic (increasing or decreasing) trend. A trajectory may change its regime because of the reaction to treatment or of a natural developmental phase, as in our motivating example about identification of genes involved in embryo development of mice with the 22q11 deletion. To this aim we propose a new flexible Bayesian autoregressive hidden Markov model based on three latent states, corresponding to stationarity, to an increasing and to a decreasing trend. In order to select a list of genes, we propose decision criteria based on the posterior distribution of the parameters of interest, taking into account the uncertainty in parameter estimates. We also compare the proposed model with two simpler models based on constrained formulations of the probability transition matrix.  相似文献   

3.
Single cell Hi-C techniques enable one to study cell to cell variability in chromatin interactions. However, single cell Hi-C (scHi-C) data suffer severely from sparsity, that is, the existence of excess zeros due to insufficient sequencing depth. Complicating the matter further is the fact that not all zeros are created equal: some are due to loci truly not interacting because of the underlying biological mechanism (structural zeros); others are indeed due to insufficient sequencing depth (sampling zeros or dropouts), especially for loci that interact infrequently. Differentiating between structural zeros and dropouts is important since correct inference would improve downstream analyses such as clustering and discovery of subtypes. Nevertheless, distinguishing between these two types of zeros has received little attention in the single cell Hi-C literature, where the issue of sparsity has been addressed mainly as a data quality improvement problem. To fill this gap, in this paper, we propose HiCImpute, a Bayesian hierarchical model that goes beyond data quality improvement by also identifying observed zeros that are in fact structural zeros. HiCImpute takes spatial dependencies of scHi-C 2D data structure into account while also borrowing information from similar single cells and bulk data, when such are available. Through an extensive set of analyses of synthetic and real data, we demonstrate the ability of HiCImpute for identifying structural zeros with high sensitivity, and for accurate imputation of dropout values. Downstream analyses using data improved from HiCImpute yielded much more accurate clustering of cell types compared to using observed data or data improved by several comparison methods. Most significantly, HiCImpute-improved data have led to the identification of subtypes within each of the excitatory neuronal cells of L4 and L5 in the prefrontal cortex.  相似文献   

4.

Background  

Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained.  相似文献   

5.
Green PE  Park T 《Biometrics》2003,59(4):886-896
Log-linear models have been shown to be useful for smoothing contingency tables when categorical outcomes are subject to nonignorable nonresponse. A log-linear model can be fit to an augmented data table that includes an indicator variable designating whether subjects are respondents or nonrespondents. Maximum likelihood estimates calculated from the augmented data table are known to suffer from instability due to boundary solutions. Park and Brown (1994, Journal of the American Statistical Association 89, 44-52) and Park (1998, Biometrics 54, 1579-1590) developed empirical Bayes models that tend to smooth estimates away from the boundary. In those approaches, estimates for nonrespondents were calculated using an EM algorithm by maximizing a posterior distribution. As an extension of their earlier work, we develop a Bayesian hierarchical model that incorporates a log-linear model in the prior specification. In addition, due to uncertainty in the variable selection process associated with just one log-linear model, we simultaneously consider a finite number of models using a stochastic search variable selection (SSVS) procedure due to George and McCulloch (1997, Statistica Sinica 7, 339-373). The integration of the SSVS procedure into a Markov chain Monte Carlo (MCMC) sampler is straightforward, and leads to estimates of cell frequencies for the nonrespondents that are averages resulting from several log-linear models. The methods are demonstrated with a data example involving serum creatinine levels of patients who survived renal transplants. A simulation study is conducted to investigate properties of the model.  相似文献   

6.
7.
8.
Background: The recently emerged technology of methylated RNA immunoprecipitation sequencing (MeRIP-seq) sheds light on the study of RNA epigenetics. This new bioinformatics question calls for effective and robust peaking calling algorithms to detect mRNA methylation sites from MeRIP-seq data. Methods: We propose a Bayesian hierarchical model to detect methylation sites from MeRIP-seq data. Our modeling approach includes several important characteristics. First, it models the zero-inflated and over-dispersed counts by deploying a zero-inflated negative binomial model. Second, it incorporates a hidden Markov model (HMM) to account for the spatial dependency of neighboring read enrichment. Third, our Bayesian inference allows the proposed model to borrow strength in parameter estimation, which greatly improves the model stability when dealing with MeRIP-seq data with a small number of replicates. We use Markov chain Monte Carlo (MCMC) algorithms to simultaneously infer the model parameters in a de novo fashion. The R Shiny demo is available at the authors' website and the R/C++ code is available at https://github.com/liqiwei2000/BaySeqPeak. Results: In simulation studies, the proposed method outperformed the competing methods exomePeak and MeTPeak, especially when an excess of zeros were present in the data. In real MeRIP-seq data analysis, the proposed method identified methylation sites that were more consistent with biological knowledge, and had better spatial resolution compared to the other methods. Conclusions: In this study, we develop a Bayesian hierarchical model to identify methylation peaks in MeRIP-seq data. The proposed method has a competitive edge over existing methods in terms of accuracy, robustness and spatial resolution.  相似文献   

9.
Brown ER  Ibrahim JG 《Biometrics》2003,59(2):221-228
This article proposes a new semiparametric Bayesian hierarchical model for the joint modeling of longitudinal and survival data. We relax the distributional assumptions for the longitudinal model using Dirichlet process priors on the parameters defining the longitudinal model. The resulting posterior distribution of the longitudinal parameters is free of parametric constraints, resulting in more robust estimates. This type of approach is becoming increasingly essential in many applications, such as HIV and cancer vaccine trials, where patients' responses are highly diverse and may not be easily modeled with known distributions. An example will be presented from a clinical trial of a cancer vaccine where the survival outcome is time to recurrence of a tumor. Immunologic measures believed to be predictive of tumor recurrence were taken repeatedly during follow-up. We will present an analysis of this data using our new semiparametric Bayesian hierarchical joint modeling methodology to determine the association of these longitudinal immunologic measures with time to tumor recurrence.  相似文献   

10.

Background  

Determining whether a gene is differentially expressed in two different samples remains an important statistical problem. Prior work in this area has featured the use of t-tests with pooled estimates of the sample variance based on similarly expressed genes. These methods do not display consistent behavior across the entire range of pooling and can be biased when the prior hyperparameters are specified heuristically.  相似文献   

11.
Time course microarray experiments designed to characterize the dynamic regulation of gene expression in biological systems are becoming increasingly important. One critical issue that arises when examining time course microarray data is the identification of genes that show different temporal expression patterns among biological conditions. Here we propose a Bayesian hierarchical model to incorporate important experimental factors and to account for correlated gene expression measurements over time and over different genes. A new gene selection algorithm is also presented with the model to simultaneously identify genes that show changes in expression among biological conditions, in response to time and other experimental factors of interest. The algorithm performs well in terms of the false positive and false negative rates in simulation studies. The methodology is applied to a mouse model time course experiment to correlate temporal changes in azoxymethane-induced gene expression profiles with colorectal cancer susceptibility.  相似文献   

12.
In the decade since their invention, spotted microarrays have been undergoing technical advances that have increased the utility, scope and precision of their ability to measure gene expression. At the same time, more researchers are taking advantage of the fundamentally quantitative nature of these tools with refined experimental designs and sophisticated statistical analyses. These new approaches utilise the power of microarrays to estimate differences in gene expression levels, rather than just categorising genes as up- or down-regulated, and allow the comparison of expression data across multiple samples. In this review, some of the technical aspects of spotted microarrays that can affect statistical inference are highlighted, and a discussion is provided of how several methods for estimating gene expression level across multiple samples deal with these challenges. The focus is on a Bayesian analysis method, BAGEL, which is easy to implement and produces easily interpreted results.  相似文献   

13.
Bayesian hierarchical error model for analysis of gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Analysis of genome-wide microarray data requires the estimation of a large number of genetic parameters for individual genes and their interaction expression patterns under multiple biological conditions. The sources of microarray error variability comprises various biological and experimental factors, such as biological and individual replication, sample preparation, hybridization and image processing. Moreover, the same gene often shows quite heterogeneous error variability under different biological and experimental conditions, which must be estimated separately for evaluating the statistical significance of differential expression patterns. Widely used linear modeling approaches are limited because they do not allow simultaneous modeling and inference on the large number of these genetic parameters and heterogeneous error components on different genes, different biological and experimental conditions, and varying intensity ranges in microarray data. RESULTS: We propose a Bayesian hierarchical error model (HEM) to overcome the above restrictions. HEM accounts for heterogeneous error variability in an oligonucleotide microarray experiment. The error variability is decomposed into two components (experimental and biological errors) when both biological and experimental replicates are available. Our HEM inference is based on Markov chain Monte Carlo to estimate a large number of parameters from a single-likelihood function for all genes. An F-like summary statistic is proposed to identify differentially expressed genes under multiple conditions based on the HEM estimation. The performance of HEM and its F-like statistic was examined with simulated data and two published microarray datasets-primate brain data and mouse B-cell development data. HEM was also compared with ANOVA using simulated data. AVAILABILITY: The software for the HEM is available from the authors upon request.  相似文献   

14.
Gompert Z  Buerkle CA 《Genetics》2011,187(3):903-917
The demography of populations and natural selection shape genetic variation across the genome and understanding the genomic consequences of these evolutionary processes is a fundamental aim of population genetics. We have developed a hierarchical Bayesian model to quantify genome-wide population structure and identify candidate genetic regions affected by selection. This model improves on existing methods by accounting for stochastic sampling of sequences inherent in next-generation sequencing (with pooled or indexed individual samples) and by incorporating genetic distances among haplotypes in measures of genetic differentiation. Using simulations we demonstrate that this model has a low false-positive rate for classifying neutral genetic regions as selected genes (i.e., Φ(ST) outliers), but can detect recent selective sweeps, particularly when genetic regions in multiple populations are affected by selection. Nonetheless, selection affecting just a single population was difficult to detect and resulted in a high false-negative rate under certain conditions. We applied the Bayesian model to two large sets of human population genetic data. We found evidence of widespread positive and balancing selection among worldwide human populations, including many genetic regions previously thought to be under selection. Additionally, we identified novel candidate genes for selection, several of which have been linked to human diseases. This model will facilitate the population genetic analysis of a wide range of organisms on the basis of next-generation sequence data.  相似文献   

15.
Bayesian mixture model based clustering of replicated microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: Identifying patterns of co-expression in microarray data by cluster analysis has been a productive approach to uncovering molecular mechanisms underlying biological processes under investigation. Using experimental replicates can generally improve the precision of the cluster analysis by reducing the experimental variability of measurements. In such situations, Bayesian mixtures allow for an efficient use of information by precisely modeling between-replicates variability. RESULTS: We developed different variants of Bayesian mixture based clustering procedures for clustering gene expression data with experimental replicates. In this approach, the statistical distribution of microarray data is described by a Bayesian mixture model. Clusters of co-expressed genes are created from the posterior distribution of clusterings, which is estimated by a Gibbs sampler. We define infinite and finite Bayesian mixture models with different between-replicates variance structures and investigate their utility by analyzing synthetic and the real-world datasets. Results of our analyses demonstrate that (1) improvements in precision achieved by performing only two experimental replicates can be dramatic when the between-replicates variability is high, (2) precise modeling of intra-gene variability is important for accurate identification of co-expressed genes and (3) the infinite mixture model with the 'elliptical' between-replicates variance structure performed overall better than any other method tested. We also introduce a heuristic modification to the Gibbs sampler based on the 'reverse annealing' principle. This modification effectively overcomes the tendency of the Gibbs sampler to converge to different modes of the posterior distribution when started from different initial positions. Finally, we demonstrate that the Bayesian infinite mixture model with 'elliptical' variance structure is capable of identifying the underlying structure of the data without knowing the 'correct' number of clusters. AVAILABILITY: The MS Windows based program named Gaussian Infinite Mixture Modeling (GIMM) implementing the Gibbs sampler and corresponding C++ code are available at http://homepages.uc.edu/~medvedm/GIMM.htm SUPPLEMENTAL INFORMATION: http://expression.microslu.washington.edu/expression/kayee/medvedovic2003/medvedovic_bioinf2003.html  相似文献   

16.
17.
18.
The increased availability of microarray data has been calling for statistical methods to integrate findings across studies. A common goal of microarray analysis is to determine differentially expressed genes between two conditions, such as treatment vs control. A recent Bayesian metaanalysis model used a prior distribution for the mean log-expression ratios that was a mixture of two normal distributions. This model centered the prior distribution of differential expression at zero, and separated genes into two groups only: expressed and nonexpressed. Here, we introduce a Bayesian three-component truncated normal mixture prior model that more flexibly assigns prior distributions to the differentially expressed genes and produces three groups of genes: up and downregulated, and nonexpressed. We found in simulations of two and five studies that the three-component model outperformed the two-component model using three comparison measures. When analyzing biological data of Bacillus subtilis, we found that the three-component model discovered more genes and omitted fewer genes for the same levels of posterior probability of differential expression than the two-component model, and discovered more genes for fixed thresholds of Bayesian false discovery. We assumed that the data sets were produced from the same microarray platform and were prescaled.  相似文献   

19.
Bigelow JL  Dunson DB 《Biometrics》2007,63(3):724-732
This article considers methodology for hierarchical functional data analysis, motivated by studies of reproductive hormone profiles in the menstrual cycle. Current methods standardize the cycle lengths and ignore the timing of ovulation within the cycle, both of which are biologically informative. Methods are needed that avoid standardization, while flexibly incorporating information on covariates and the timing of reference events, such as ovulation and onset of menses. In addition, it is necessary to account for within-woman dependency when data are collected for multiple cycles. We propose an approach based on a hierarchical generalization of Bayesian multivariate adaptive regression splines. Our formulation allows for an unknown set of basis functions characterizing the population-averaged and woman-specific trajectories in relation to covariates. A reversible jump Markov chain Monte Carlo algorithm is developed for posterior computation. Applying the methods to data from the North Carolina Early Pregnancy Study, we investigate differences in urinary progesterone profiles between conception and nonconception cycles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号