首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighteen mycoparasitic Trichoderma strains were tested for their ability to degrade heat-inactivated Bacillus cereus var. mycoides, B. megaterium, B. subtilis, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Serratia marcescens cells. The non-inductive and inductive ferment broths of five strains with good degrading abilities towards B. subtilis were investigated for specific degrading enzyme activities. In addition to trypsin- and chymotrypsin-like protease activities, -1,4-N-acetyl-glucosaminidase (NAGase) was also secreted. Strain Trichoderma harzianum T19 had the most outstanding degrading abilities. The extracellular degrading enzymes of this strain were separated on a Sephadex G-150 column, and their preliminary characterization was performed. The results demonstrated that muramidase-like activities are present in the ferment broth of this T. harzianum strain.  相似文献   

2.
Breeding of mycoparasitic Trichoderma strains for heavy metal resistance   总被引:1,自引:0,他引:1  
AIMS: This study was designed to investigate the effects of 10 heavy metals on the in vitro activities of beta-glucosidase, cellobiohydrolase, beta-xylosidase and endoxylanase enzymes for six strains of Trichoderma, and to isolate and characterize heavy metal-resistant mutants. METHODS AND RESULTS: At a concentration of 1 mmol, only mercury showed significant inhibitory effects on the in vitro enzyme activities; in all other cases, the enzymes remained active. A total of 177 heavy metal-resistant mutants were isolated and tested for cross-resistance to other heavy metals. Some mutants were effective antagonists of Fusarium, Pythium and Rhizoctonia strains, even on media containing the respective heavy metals. CONCLUSION: Trichoderma strains could be developed as biocontrol agents that are effective against plant pathogenic fungi, even under heavy metal stress. SIGNIFICANCE AND IMPACT OF THE STUDY: Trichoderma mutants resistant to heavy metals might be of value for use with heavy metal-containing pesticides, as part of an integrated plant protection system.  相似文献   

3.

Background  

In mammals, pheromones play an important role in social and innate reproductive behavior within species. In rodents, vomeronasal receptor type 1 (V1R), which is specifically expressed in the vomeronasal organ, is thought to detect pheromones. The V1R gene repertoire differs dramatically between mammalian species, and the presence of species-specific V1R subfamilies in mouse and rat suggests that V1R plays a profound role in species-specific recognition of pheromones. In ruminants, however, the molecular mechanism(s) for pheromone perception is not well understood. Interestingly, goat male pheromone, which can induce out-of-season ovulation in anestrous females, causes the same pheromone response in sheep, and vice versa, suggesting that there may be mechanisms for detecting "inter-species" pheromones among ruminant species.  相似文献   

4.
Abstract A 1424 bp DNA sequence containing the genetic determinants of the chitinase enzyme was identified in Trichoderma hamatum by PCR amplification. High levels of similarity were observed between this sequence, named Th-ch ( T. hamatum chitinase), and the 42 kDa chitinase genes known from T. harzianum . Chromosome-sized DNAs of five potential biocontrol species of Trichoderma were separated by pulsed-field gel electrophoresis. The total number of chromosomes was six in all the species, with sizes ranging from 3.7 to 7.7 Mb; estimated genome sizes were between 30.5 and 35.8 Mb. When fractionated chromosomes of the five species were probed with radiolabelled Th-ch, strong hybridization signals developed in all cases, but the physical position of these signals varied among species indicating a polymorphic chromosomal location of the highly conserved 42 kDa chitinase gene within the genus Trichoderma .  相似文献   

5.
Regulation of chitinase synthesis in Trichoderma harzianum.   总被引:8,自引:0,他引:8  
The production of chitinase by Trichoderma species is of interest in relation to their use in biocontrol and as a source of mycolytic enzymes. Fourteen isolates of the genus were screened to identify the most effective producer of chitinase. The best strain for chitinase was Trichoderma harzianum 39.1, and this was selected for study of the regulation of enzyme synthesis. Washed mycelium of T. harzianum 39.1 was incubated with a range of carbon sources. Chitinase synthesis was induced on chitin-containing medium, but repressed by glucose and N-acetylglucosamine. Production of the enzyme was optimal at a chitin concentration of 0.5%, at 28 degrees C, pH 6.0 and was independent of the age of the mycelium. The synthesis of chitinase was blocked by both 8-hydroxyquinoline and cycloheximide, inhibitors of RNA and protein synthesis, respectively. The mode of chitinase synthesis in this fungus is discussed.  相似文献   

6.
Losses due to plant diseases may be as high as 10-20% of the total worldwide food production every year, resulting in economic losses amounting to many billions of dollars and diminished food supplies. Chemical control involves the use of chemical pesticides to eradicate or reduce the populations of pathogens or to protect the plants from infection by pathogens. For some diseases chemical control is very effective, but it is often non-specific in its effects, killing beneficial organisms as well as pathogens, and it may have undesirable health, safety, and environmental risks. Biological control involves the use of one or more biological organisms to control the pathogens or diseases. Biological control is more specialized and uses specific microorganisms that attack or interfere with the pathogens. The members of the genus Trichoderma are very promising against soil-born plant parasitic fungi. These filamentous fungi are very widespread in nature, with high population densities in soils and plant litters [1]. They are saprophytic, quickly growing and easy to culture and they can produce large amounts of conidia with long lifetime.  相似文献   

7.
8.
9.
10.
The soil fungus Trichoderma atroviride, a mycoparasite, responds to a number of external stimuli. In the presence of a fungal host, T. atroviride produces hydrolytic enzymes and coils around the host hyphae. In response to light or nutrient depletion, asexual sporulation is induced. In a biomimetic assay, different lectins induce coiling around nylon fibers; coiling in the absence of lectins can be induced by applying cyclic AMP (cAMP) or the heterotrimeric G-protein activator mastoparan. We isolated a T. atroviride G-protein alpha-subunit (Galpha) gene (tgal) belonging to the fungal subfamily with the highest similarity to the Galpha1 class. Generated transgenic lines that overexpress Galpha show very delayed sporulation and coil at a higher frequency. Furthermore, transgenic lines that express an activated mutant protein with no GTPase activity do not sporulate and coil at a higher frequency. Lines that express an antisense version of the gene are hypersporulating and coil at a much lower frequency in the biomimetic assay. The loss of Tgal in these mutants correlates with the loss of GTPase activity stimulated by the peptide toxin Mas-7. The application of Mas-7 to growing mycelial colonies raises intracellular cAMP levels, suggesting that Tgal can activate adenylyl cyclase. In contrast, cAMP levels and cAMP-dependent protein kinase activity drop when diffusible host signals are encountered and the mycoparasitism-related genes ech42 and prb1 are highly expressed. Mycoparasitic signaling is unlikely to be a linear pathway from host signals to increased cAMP levels. Our results demonstrate that the product of the tga1 gene is involved in both coiling and conidiation.  相似文献   

11.
The avian oocyte is surrounded by a specialized extracellular glycoproteinaceous matrix, the perivitelline membrane, which is equivalent to the zona pellucida (ZP) in mammals and the chorion in teleosts. A number of related ZP genes encode the proteins that make up this matrix. These proteins play an important role in the sperm/egg interaction and may be involved in speciation. The human genome is known to contain ZP1, ZP2, ZP3, and ZPB genes, while a ZPAX gene has also been identified in Xenopus. The rapid evolution of these genes has confused the nomenclature and thus orthologous relationships across species. In order to clarify these homologies, we have identified ZP1, ZP2, ZPC, ZPB, and ZPAX genes in the chicken and mapped them to chromosomes 5, 14, 10, 6, and 3, respectively, establishing conserved synteny with human and mouse. The amino acid sequences of these genes were compared to the orthologous genes in human, mouse, and Xenopus, and have given us an insight into the evolution of these genes in a variety of different species. The presence of the ZPAX gene in the chicken has highlighted a pattern of probable gene loss by deletion in mouse and gene inactivation by deletion, and base substitution in human.  相似文献   

12.
Usukizyme, a commercial enzyme preparation from Trichoderma viride, showed multiple chitin- degrading activities. One of these was purified to homogeneity by sequential DEAE Sepharose CL-6B, Q-Sepharose FF, and Sephacryl S-100 HR column chromatographies. The purified enzyme showed optimum activity at pH 3.5 and 50 degrees -55 degrees C and was stable in the pH range of 3.5-6.0 and up to 45 degrees C. It showed higher activity toward chitosan-7B, a 62% deacetylated chitosan, as opposed to highly deacetylated chitosan substrates. Products of degradation of a 1% (w/v) solution of partially deacetylated chitin (PC-100) were purified on CM-Sephadex C-25 and analyzed by HPLC, exo-glycosidase digestion, and nitrous acid deamination. The enzyme was unable to split the GlcN-GlcN linkages in the substrate. It produced mainly (GlcNAc)(2) and (GlcNAc)(3) along with mixed oligosaccharides. When subjected to nitrous acid degradation, some of the mixed oligosaccharides produced mainly 2-deoxyglucitol, implying the presence of GlcN at the reducing end of the oligosaccharides.  相似文献   

13.

Background  

Myelination of peripheral nerves by Schwann cells requires not only the Egr2/Krox-20 transactivator, but also the NGFI-A/Egr-binding (NAB) corepressors, which modulate activity of Egr2. Previous work has shown that axon-dependent expression of Egr2 is mediated by neuregulin stimulation, and NAB corepressors are co-regulated with Egr2 expression in peripheral nerve development. NAB corepressors have also been implicated in macrophage development, cardiac hypertrophy, prostate carcinogenesis, and feedback regulation involved in hindbrain development.  相似文献   

14.
For monitoring chitinase expression during mycoparasitism of Trichoderma harzianum in situ, we constructed strains containing fusions of green fluorescent protein (GFP) to the 5'-regulatory sequences of the T. harzianum nag1 (N-acetyl-beta-d-glucosaminidase-encoding) and ech42 (42-kDa endochitinase-encoding) genes. Confronting these strains with Rhizoctonia solani led to induction of gene expression before (ech42) or after (nag1) physical contact. A 12-kDa cut-off membrane separating the two fungi abolished ech42 expression, indicating that macromolecules are involved in its precontact activation. No ech42 expression was triggered by culture filtrates of R. solani or by placing T. harzianum onto plates previously colonized by R. solani. Instead, high expression occurred upon incubation of T. harzianum with the supernatant of R. solani cell walls digested with culture filtrates or purified endochitinase 42 (CHIT42, encoded by ech42) from T. harzianum. The chitinase inhibitor allosamidin blocked ech42 expression and reduced inhibition of R. solani growth during confrontation. The results indicate that ech42 is expressed before contact of T. harzianum with R. solani and its induction is triggered by soluble chitooligosaccharides produced by constitutive activity of CHIT42 and/or other chitinolytic enzymes.  相似文献   

15.
16.
Assignment of orthologous genes via genome rearrangement   总被引:1,自引:0,他引:1  
The assignment of orthologous genes between a pair of genomes is a fundamental and challenging problem in comparative genomics. Existing methods that assign orthologs based on the similarity between DNA or protein sequences may make erroneous assignments when sequence similarity does not clearly delineate the evolutionary relationship among genes of the same families. In this paper, we present a new approach to ortholog assignment that takes into account both sequence similarity and evolutionary events at a genome level, where orthologous genes are assumed to correspond to each other in the most parsimonious evolving scenario under genome rearrangement. First, the problem is formulated as that of computing the signed reversal distance with duplicates between the two genomes of interest. Then, the problem is decomposed into two new optimization problems, called minimum common partition and maximum cycle decomposition, for which efficient heuristic algorithms are given. Following this approach, we have implemented a high-throughput system for assigning orthologs on a genome scale, called SOAR, and tested it on both simulated data and real genome sequence data. Compared to a recent ortholog assignment method based entirely on homology search (called INPARANOID), SOAR shows a marginally better performance in terms of sensitivity on the real data set because it is able to identify several correct orthologous pairs that are missed by INPARANOID. The simulation results demonstrate that SOAR, in general, performs better than the iterated exemplar algorithm in terms of computing the reversal distance and assigning correct orthologs.  相似文献   

17.
Streptomyces coelicolor A3(2) possesses nine genes for family 18 chitinases and two for family 19, showing high multiplicity. By hybridization analyses, distribution of those chitinase genes was investigated in six other Streptomyces species covering the whole phylogenetic range based on 16S rDNA sequences. All strains showed high-multiplicity of chitinase genes, like S. coelicolor A3(2). The phylogeny and gene organization of the family 18 chitinase genes cloned from Streptomyces species so far were then analyzed to investigate the gene evolution. It was concluded that Streptomyces already possessed a variety of chitinase genes prior to branching into many species, and that the ancestral genes of chiA and chiB have been generated by gene-duplication. In the course of the analyses, evidence that the chi30 and chi40 genes of S. thermoviolaceus were derived from their corresponding original chitinase genes by losing gene parts for substrate-binding domains and fibronectin type III-like domains was obtained. It was thus shown that gene-duplication and domain-deletion were implicated in generating the high diversity and multiplicity of chitinase genes in Streptomyces species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Chitinase gene ech42 was obtained from Trichoderma aureoviride M and amplified by PCR. The isolated DNA of ech42 was then sequenced. The results showed that the open reading frame of ech42 was 1,447 bp long, encoding 421 amino acids. Three introns were found in the sequence. The cloning vector pMD18-T and an E. coli DH5α host were used to yield clones as E. coli DH5α/ech42. The ech42 gene was integrated into the genomic DNA of pYES2 by insertion into a single site for recombination, yielding the recombinant pYES2/ech42. Chitinase expressed by pYES2/ech42 was induced by galactose (maximal activity 0.50 units ml−1) and was produced in fermentation liquid cultured for 36 h.  相似文献   

20.
AIMS: The main problem that arises during the cultivation of Lentinula edodes, the Asian Shiitake mushroom, is that the logs on which the cultivation is performed are contaminated by competing micro-organisms, especially Trichoderma spp. The aim of this study was to examine the changes in activity of extracellular enzymes in dual cultures of Trichoderma spp. and L. edodes. METHODS AND RESULTS: Extracellular enzyme activities were determined spectrophotometrically. Trichoderma enzymes important for the degradation of fungal cell walls (N-acetyl-beta-glucosaminidase and laminarinase) were shown to be induced by inactive L. edodes mycelia in liquid culture. The changes that occurred in the extracellular enzyme activities of L. edodes and mycoparasitic Trichoderma spp. (T. aureoviride, T. harzianum and T. viride) were examined during antagonistic interactions on solid medium. The extracellular enzyme patterns of both partners proved to be altered. Trichoderma spp. were induced to produce N-acetyl-beta-glucosaminidase and laminarinase in the presence of active L. edodes mycelia, similarly as observed in liquid culture. The activities of both laccase and manganese peroxidase of L. edodes decreased after physical contact with active Trichoderma mycelia, possibly in consequence of the beginning of degradation of L. edodes by the Trichoderma enzymes. However, besides a decrease in manganese peroxidase activity, an enhancement of L. edodes laccase activity was observed on solid media containing crude culture fluids from Trichoderma liquid cultures. The metabolites responsible for these effects proved to be heat stable. CONCLUSIONS: Induction and inhibition of several extracellular enzymes of both partners were shown in dual cultures of L. edodes and Trichoderma strains, indicating the important role of these enzymes in the antagonistic interaction between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: As the main problem during the large-scale cultivation of L. edodes is the contamination of the growth substrate by Trichoderma mycelia, the particular knowledge of the mechanism of this competition might be relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号