首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of inhibition of chaperonin functional activity by amyloid proteins was studied. It was found that the ovine prion protein PrP as well as its oligomeric and fibrillar forms are capable of binding with the chaperonin GroEL. Besides, GroEL was shown to promote amyloid aggregation of the monomeric and oligomeric PrP as well as PrP fibrils. The monomeric PrP was shown to inhibit the GroEL-assisted reactivation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The oligomers of PrP decelerate the GroEL-assisted reactivation of GAPDH, and PrP fibrils did not affect this process. The chaperonin GroEL is capable of interacting with GAPDH and different PrP forms simultaneously. A possible role of the inhibition of chaperonins by amyloid proteins in the misfolding of the enzymes involved in cell metabolism and in progression of neurodegenerative diseases of amyloid nature is discussed.  相似文献   

2.
To clarify the role of chaperones in the development of amyloid diseases, the interaction of the chaperonin GroEL with misfolded proteins and recombinant prions has been studied. The efficiency of the chaperonin-assisted folding of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be decreased in the presence of prions. Prions are capable of binding to GroEL immobilized on Sepharose, but this does not prevent the interaction between GroEL and other denatured proteins. The size of individual proteins (GroEL, GAPDH, and the recombinant prion) and aggregates formed after their mixing have been determined by the dynamic light scattering analysis. It was shown that at 25°C, the non-functioning chaperonin (equimolar mixture of GroEL and GroES in the absence of Mg-ATP) bound prion yielding large aggregates (greater than 400 nm). The addition of Mg-ATP decreased significantly the size of the aggregates to 70–80 nm. After blocking of one of the chaperonin active sites by oxidized denatured GAPDH, the aggregate size increased to 1200 nm, and the addition of Mg-ATP did not prevent the aggregation. These data indicate the significant role of chaperonins in the formation of amyloid structures and demonstrate the acceleration of aggregation in the presence of functionally inactive chaperonins. The suggested model can be used for the analysis of the efficiency of antiaggregants in the system containing chaperonins.  相似文献   

3.
In the past decade, the eubacterial group I chaperonin GroEL became the paradigm of a protein folding machine. More recently, electron microscopy and X-ray crystallography offered insights into the structure of the thermosome, the archetype of the group II chaperonins which also comprise the chaperonin from the eukaryotic cytosol TRiC. Some structural differences from GroEL were revealed, namely the existence of a built-in lid provided by the helical protrusions of the apical domains instead of a GroES-like co-chaperonin. These structural studies provide a framework for understanding the differences in the mode of action between the group II and the group I chaperonins. In vitro analyses of the folding of non-native substrates coupled to ATP binding and hydrolysis are progressing towards establishing a functional cycle for group II chaperonins. A protein complex called GimC/prefoldin has recently been found to cooperate with TRiC in vivo, and its characterization is under way.  相似文献   

4.
The mechanism of chaperonins is still under intense investigation. Earlier studies by others and us on the bacterial chaperonin GroEL points to an active role of chaperonins in unfolding the target protein during initial binding. Here, a natural eukaryotic chaperonin system [tail-less complex polypeptide 1 (TCP-1) ring complex (TRiC) and its target protein actin] was investigated to determine if the active participation of the chaperonin in the folding process is evolutionary-conserved. Using fluorescence resonance energy transfer (FRET) measurements on four distinct doubly fluorescein-labeled variants of actin, we have obtained a fairly detailed map of the structural rearrangements that occur during the TRiC-actin interaction. The results clearly show that TRiC has an active role in rearranging the bound actin molecule. The target is stretched as a consequence of binding to TRiC and further rearranged in a second step as a consequence of ATP binding; i.e., the mechanism of chaperonins is conserved during evolution.  相似文献   

5.
Recombinant expression of actin in bacteria results in non-native species that aggregate into inclusion bodies. Actin is a folding substrate of TRiC, the chaperonin of the eukaryotic cytosol. By employing bacterial in vitro translation lysates supplemented with purified chaperones, we have found that TRiC is the only eukaryotic chaperone necessary for correct folding of newly translated actin. The actin thus produced binds deoxyribonuclease I and polymerizes into filaments, hallmarks of its native state. In contrast to its rapid folding in the eukaryotic cytosol, actin translated in TRiC-supplemented bacterial lysate folds with slower kinetics, resembling the kinetics upon refolding from denaturant. Lysate supplementation with the bacterial chaperonin GroEL/ES or the DnaK/DnaJ/GrpE chaperones leads to prevention of actin aggregation, yet fails to support its correct folding. This combination of in vitro bacterial translation and TRiC-assisted folding allows a detailed analysis of the mechanisms necessary for efficient actin folding in vivo. In addition, it provides a robust alternative for the production of substantial amounts of eukaryotic proteins that otherwise misfold or lead to cellular toxicity upon expression in heterologous hosts.  相似文献   

6.
The ring-shaped hetero-oligomeric chaperonin TRiC/CCT uses ATP to fold a diverse subset of eukaryotic proteins. To define the basis of TRiC/CCT substrate recognition, we mapped the chaperonin interactions with the VHL tumor suppressor. VHL has two well-defined TRiC binding determinants. Each determinant contacts a specific subset of chaperonin subunits, indicating that TRiC paralogs exhibit distinct but overlapping specificities. The substrate binding site in these subunits localizes to a helical region in the apical domains that is structurally equivalent to that of bacterial chaperonins. Transferring the distal portion of helix 11 between TRiC subunits suffices to transfer specificity for a given substrate motif. We conclude that the architecture of the substrate binding domain is evolutionarily conserved among eukaryotic and bacterial chaperonins. The unique combination of specificity and plasticity in TRiC substrate binding may diversify the range of motifs recognized by this chaperonin and contribute to its unique ability to fold eukaryotic proteins.  相似文献   

7.
Chaperonins use ATPase cycling to promote conformational changes leading to protein folding. The prokaryotic chaperonin GroEL requires a cofactor, GroES, which serves as a "lid" enclosing substrates in the central cavity and confers an asymmetry on GroEL required for cooperative transitions driving the reaction. The eukaryotic chaperonin TRiC/CCT does not have such a cofactor but appears to have a "built-in" lid. Whether this seemingly symmetric chaperonin also operates through an asymmetric cycle is unclear. We show that unlike GroEL, TRiC does not close its lid upon nucleotide binding, but instead responds to the trigonal-bipyramidal transition state of ATP hydrolysis. Further, nucleotide analogs inducing this transition state confer an asymmetric conformation on TRiC. Similar to GroEL, lid closure in TRiC confines the substrates in the cavity and is essential for folding. Understanding the distinct mechanisms governing eukaryotic and bacterial chaperonin function may reveal how TRiC has evolved to fold specific eukaryotic proteins.  相似文献   

8.
T-complex polypeptide 1 (TCP-1) was analyzed as a potential chaperonin (GroEL/Hsp60) equivalent of the eukaryotic cytosol. We found TCP-1 to be part of a hetero-oligomeric 970 kDa complex containing several structurally related subunits of 52-65 kDa. These members of a new protein family are assembled into a TCP-1 ring complex (TRiC) which resembles the GroEL double ring. The main function of TRiC appears to be in chaperoning monomeric protein folding: TRiC binds unfolded polypeptides, thereby preventing their aggregation, and mediates the ATP-dependent renaturation of unfolded firefly luciferase and tubulin. At least in vitro, TRiC appears to function independently of a small co-chaperonin protein such as GroES. Folding of luciferase is mediated by TRiC but not by GroEL/ES. This suggests that the range of substrate proteins interacting productively with TRiC may differ from that of GroEL. We propose that TRiC mediates the folding of cytosolic proteins by a mechanism distinct from that of the chaperonins in specific aspects.  相似文献   

9.
ABSTRACT

Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins—constrained by sequence, topology, size, and function—simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.  相似文献   

10.
The eukaryotic cytosolic chaperonins are large heterooligomeric complexes with a cylindrical shape, resembling that of the homooligomeric bacterial counterpart, GroEL. In analogy to GroEL, changes in shape of the cytosolic chaperonin have been detected in the presence of MgATP using electron microscopy but, in contrast to the nucleotide-induced conformational changes in GroEL, no details are available about the specific nature of these changes. The present study identifies the structural regions of the cytosolic chaperonin that undergo conformational changes when MgATP binds to the nucleotide binding domains. It is shown that limited proteolysis with trypsin in the absence of MgATP cleaves each of the eight subunits approximately in half, generating two fragments of approximately 30 kDa. Using mass spectrometry (MS) and N-terminal sequence analysis, the cleavage is found to occur in a narrow span of the amino acid sequence, corresponding to the peptide binding regions of GroEL and to the helical protrusion, recently identified in the structure of the substrate binding domain of the archeal group II chaperonin. This proteolytic cleavage is prevented by MgATP but not by ATP in the absence of magnesium, ATP analogs (MgATPyS and MgAMP-PNP) or MgADP. These results suggest that, in analogy to GroEL, binding of MgATP to the nucleotide binding domains of the cytosolic chaperonin induces long range conformational changes in the polypeptide binding domains. It is postulated that despite their different subunit composition and substrate specificity, group I and group II chaperonins may share similar, functionally-important, conformational changes. Additional conformational changes are likely to involve a flexible helix-loop-helix motif, which is characteristic for all group II chaperonins.  相似文献   

11.
Actin, an abundant cytosolic protein in eukaryotic cells, is dependent on the interaction with the chaperonin tail-less complex polypeptide 1 ring complex (TRiC) to fold to the native state. The prokaryotic chaperonin GroEL also binds non-native beta-actin, but is unable to guide beta-actin toward the native state. In this study we identify conformational rearrangements in beta-actin, by observing similarities and differences in the action of the two chaperonins. A cooperative collapse of beta-actin from the denatured state to an aggregation-prone intermediate is observed, and insoluble aggregates are formed in the absence of chaperonin. In the presence of GroEL, however, >90% of the aggregation-prone actin intermediate is kept in solution, which shows that the binding of non-native actin to GroEL is effective. The action of GroEL on bound flourescein-labeled beta-actin was characterized, and the structural rearrangement was compared to the case of the beta-actin-TRiC complex, employing the homo fluorescence resonance energy transfer methodology previously used [Villebeck, L., Persson, M., Luan, S.-L., Hammarstr?m, P., Lindgren, M., and Jonsson, B.-H. (2007) Biochemistry 46 (17), 5083-93]. The results suggest that the actin structure is rearranged by a "binding-induced expansion" mechanism in both TRiC and GroEL, but that binding to TRiC, in addition, causes a large and specific separation of two subdomains in the beta-actin molecule, leading to a distinct expansion of its ATP-binding cleft. Moreover, the binding of ATP and GroES has less effect on the GroEL-bound beta-actin molecule than the ATP binding to TRiC, where it leads to a major compaction of the beta-actin molecule. It can be concluded that the specific and directed rearrangement of the beta-actin structure, seen in the natural beta-actin-TRiC system, is vital for guiding beta-actin to the native state.  相似文献   

12.
The infectious prion protein, PrP(Sc), a predominantly beta-sheet aggregate, is derived from PrP(C), the largely alpha-helical cellular isoform of PrP. Conformational conversion of PrP(C) into PrP(Sc) has been suggested to involve a chaperone-like factor. Here we report that the bacterial chaperonin GroEL, a close homolog of eukaryotic Hsp60, can catalyze the aggregation of chemically denatured and of folded, recombinant PrP in a model reaction in vitro. Aggregates form upon ATP-dependent release of PrP from chaperonin and have certain properties of PrP(Sc), including a high beta-sheet content, the ability to bind the dye Congo red, detergent-insolubility and increased protease-resistance. A conserved sequence segment of PrP (residues 90-121), critical for PrP(Sc) generation in vivo, is also required for chaperonin-mediated aggregate formation in vitro. Initial binding of refolded, alpha-helical PrP to chaperonin is mediated by the unstructured N-terminal segment of PrP (residues 23-121) and is followed by a rearrangement of the globular PrP core-domain. These results show that chaperonins of the Hsp60 class can, in principle, mediate PrP aggregation de novo, i.e. independently of a pre-existent PrP(Sc) template.  相似文献   

13.
Chaperonins assist in the folding of nascent and misfolded proteins, though the mechanism of folding within the lumen of the chaperonin remains poorly understood. The archeal chaperonin from Methanococcus marapaludis, Mm-Cpn, shares the eightfold double barrel structure with other group II chaperonins, including the eukaryotic TRiC/CCT, required for actin and tubulin folding. However, Mm-Cpn is composed of a single species subunit, similar to group I chaperonin GroEL, rather than the eight subunit species needed for TRiC/CCT. Features of the β-sheet fold have been identified as sites of recognition by group II chaperonins. The crystallins, the major components of the vertebrate eye lens, are β-sheet proteins with two homologous Greek key domains. During refolding in vitro a partially folded intermediate is populated, and partitions between productive folding and off-pathway aggregation. We report here that in the presence of physiological concentrations of ATP, Mm-Cpn suppressed the aggregation of HγD-Crys by binding the partially folded intermediate. The complex was sufficiently stable to permit recovery by size exclusion chromatography. In the presence of ATP, Mm-Cpn promoted the refolding of the HγD-Crys intermediates to the native state. The ability of Mm-Cpn to bind and refold a human β-sheet protein suggests that Mm-Cpn may be useful as a simplified model for the substrate recognition mechanism of TRiC/CCT.  相似文献   

14.
Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.  相似文献   

15.
The chaperonins are a subgroup of oligomeric molecular chaperones; the best-studied examples are chaperonin 60 (GroEL) and chaperonin 10 (GroES), both from the bacterium Escherichia coli. At the end of the 20th century, the paradigm of chaperonins as protein folders had emerged, but it is likely that during the 21st century these proteins will come to be viewed as intercellular signals. Indeed, it is possible that the chaperonins were among the first intercellular signalling proteins to evolve. During the past few years, it has emerged that chaperonin 10 and chaperonin 60 can be found on the surface of various prokaryotic and eukaryotic cells, and can even be released from cells. Secreted chaperonins can interact with a variety of cell types, including leukocytes, vascular endothelial cells and epithelial cells, and activate key cellular activities such as the synthesis of cytokines and adhesion proteins. Much has been made of the high degree of sequence conservation among the chaperonins, particularly in terms of the immunogenicity of these proteins. However, different chaperonin 60 proteins can bind to different cell-surface receptors, including the Toll-like receptors, suggesting that this family of proteins cannot be treated as one biological entity and that several subfamilies may exist. Chaperonins have been implicated in human diseases on the basis of their immunogenicity. The finding that chaperonins can also induce tissue pathology suggests that they may play roles in infections and in idiopathic diseases such as atherosclerosis and arthritis.  相似文献   

16.
The cytosolic chaperonin TRiC was isolated from ovine testes using ultracentrifugation and heparin-Sepharose chromatography. The molecular mass of the obtained preparation was shown to exceed 900 kDa (by Blue Native PAGE). SDS–PAGE yielded a set of bands in the range of 50–60 kDa. Electron microscopy examination revealed ring-shaped complexes with the outer diameter of 15 nm and the inner diameter of approximately 6 nm. The results suggest that the purified chaperonin is an oligomeric complex composed of two 8-membered rings.The chaperonin TRiC was shown to assist an ATP-dependent refolding of recombinant forms of sperm-specific glyceraldehyde-3-phosphate dehydrogenase, an enzyme that is expressed only in precursor cells of the sperms in the seminiferous tubules of the testes. In contrast, TRiC did not influence the refolding of muscle isoform of glyceraldehyde-3-phosphate dehydrogenase and assisted the refolding of muscle lactate dehydrogenase by an ATP-independent mechanism. The obtained results suggest that TRiC is likely to be involved in the refolding of sperm-specific proteins.  相似文献   

17.
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10–15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.  相似文献   

18.
A series of structural intermediates in the putative pathway from the cellular prion protein PrP(C) to the pathogenic form PrP(Sc) was established by systematic variation of low concentrations (<0.1%) of the detergent sodium dodecyl sulfate (SDS) or by the interaction with the bacterial chaperonin GroEL. Most extended studies were carried out with recombinant PrP (90-231) corresponding to the amino acid sequence of hamster prions PrP 27-30. Similar results were obtained with full-length recombinant PrP, hamster PrP 27-30 and PrP(C) isolated from transgenic, non-infected CHO cells. Varying the incubation conditions, i.e. the concentration of SDS, the GroEL and GroEL/ES, but always at neutral pH and room temperature, different conformations could be established. The conformations were characterized with respect to secondary structure as determined by CD spectroscopy and to molecular mass, as determined by fluorescence correlation spectroscopy and analytical ultracentrifugation: alpha-helical monomers, soluble alpha-helical dimers, soluble but beta-structured oligomers of a minimal size of 12-14 PrP molecules, and insoluble multimers were observed. A high activation barrier was found between the alpha-helical dimers and beta-structured oligomers. The numbers of SDS-molecules bound to PrP in different conformations were determined: Partially denatured, alpha-helical monomers bind 31 SDS molecules per PrP molecule, alpha-helical dimers 21, beta-structured oligomers 19-20, and beta-structured multimers show very strong binding of five SDS molecules per PrP molecule. Binding of only five molecules of SDS per molecule of PrP leads to fast formation of beta-structures followed by irreversible aggregation. It is discussed that strongest binding of SDS has an effect identical with or similar to the interaction with GroEL thereby inducing identical or very similar transitions. The interaction with GroEL/ES stabilizes the soluble, alpha-helical conformation. The structure and their stabilities and particularly the induction of transitions by interaction of hydrophobic sites of PrP are discussed in respect to their biological relevance.  相似文献   

19.
Archaeal and eukaryotic cytosols contain group II chaperonins, which have a double-barrel structure and fold proteins inside a cavity in an ATP-dependent manner. The most complex of the chaperonins, the eukaryotic TCP-1 ring complex (TRiC), has eight different subunits, chaperone containing TCP-1 (CCT1–8), that are arranged so that there is one of each subunit per ring. Aspects of the structure and function of the bovine and yeast TRiC have been characterized, but studies of human TRiC have been limited. We have isolated and purified endogenous human TRiC from HeLa suspension cells. This purified human TRiC contained all eight CCT subunits organized into double-barrel rings, consistent with what has been found for bovine and yeast TRiC. The purified human TRiC is active as demonstrated by the luciferase refolding assay. As a more stringent test, the ability of human TRiC to suppress the aggregation of human γD-crystallin was examined. In addition to suppressing off-pathway aggregation, TRiC was able to assist the refolding of the crystallin molecules, an activity not found with the lens chaperone, α-crystallin. Additionally, we show that human TRiC from HeLa cell lysate is associated with the heat shock protein 70 and heat shock protein 90 chaperones. Purification of human endogenous TRiC from HeLa cells will enable further characterization of this key chaperonin, required for the reproduction of all human cells.  相似文献   

20.
Protein folding by chaperonins is powered by ATP binding and hydrolysis. ATPase activity drives the folding machine through a series of conformational rearrangements, extensively described for the group I chaperonin GroEL from Escherichia coli but still poorly understood for the group II chaperonins. The latter--archaeal thermosome and eukaryotic TRiC/CCT--function independently of a GroES-like cochaperonin and are proposed to rely on protrusions of their own apical domains for opening and closure in an ATP-controlled fashion. Here we use small-angle neutron scattering to analyze structural changes of the recombinant alpha-only and the native alphabeta-thermosome from Thermoplasma acidophilum upon their ATPase cycling in solution. We show that specific high-salt conditions, but not the presence of MgATP alone, induce formation of higher order thermosome aggregates. The mechanism of the open-closed transition of the thermosome is strongly temperature-dependent. ATP binding to the chaperonin appears to be a two-step process: at lower temperatures an open state of the ATP-thermosome is predominant, whereas heating to physiological temperatures induces its switching to a closed state. Our data reveal an analogy between the ATPase cycles of the two groups of chaperonins and enable us to put forward a model of thermosome action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号