首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic and evolutionary relationship among 2,4-diacetylphloroglucinol (Phl)-producing pseudomonads that protect plants from soil-borne pathogens were investigated by multilocus sequence typing. A total of 65 pseudomonads consisting of 58 Phl-positive biocontrol strains of worldwide origin and seven Phl-negative representatives of characterized Pseudomonas species were compared using 10 housekeeping genes (i.e. rrs, dsbA, gyrB, rpoD, fdxA, recA, rpoB, fusA, rpsL and rpsG). Multilocus sequence typing differentiated 51 strains among 58 Phl-positive pseudomonads and proved to be as discriminative as enterobacterial repetitive intergenic consensus polymerase chain reaction profiling. As phylogenetic trees inferred from each locus were rather incongruent with one another, we derived the topology from all concatenated loci, which led to the identification of six main groups of Phl-producing Pseudomonas spp. Taxonomically, these groups could correspond to at least six different species. Linkage disequilibrium analysis pointed to a rather clonal structure, even when the analysis was restricted to Phl-producing pseudomonads from a same geographic location or a same phylogenetic group. Intragenic recombination was evidenced for gyrB, rpoD and fdxA, but was shown to be a weaker force than mutation in the origin of intragenetic diversity. This is the first multilocus assessment of the phylogeny and population structure of an ecologically important bacterial group involved in plant disease suppression.  相似文献   

2.
Plant-beneficial fluorescent Pseudomonas spp. play important ecological roles. Here, their evolutionary history was investigated by a multilocus approach targeting genes involved in synthesis of secondary antimicrobial metabolites implicated in biocontrol of phytopathogens. Some of these genes were proposed to be ancestral, and this was investigated using a worldwide collection of 30 plant-colonizing fluorescent pseudomonads, based on phylogenetic analysis of 14 loci involved in production of 2,4-diacetylphloroglucinol (phlACBDE, phlF, intergenic locus phlA/phlF), hydrogen cyanide (hcnABC, anr) or global regulation of secondary metabolism (gacA, gacS, rsmZ). The 10 housekeeping loci rrs, dsbA, gyrB, rpoD, fdxA, recA, rpoB, rpsL, rpsG, and fusA served as controls. Each strain was readily distinguished from the others when considering allelic combinations for these 14 biocontrol-relevant loci. Topology comparisons based on Shimodaira-Hasegawa tests showed extensive incongruence when comparing single-locus phylogenetic trees with one another, but less when comparing (after sequence concatenation) trees inferred for genes involved in 2,4-diacetylphloroglucinol synthesis, hydrogen cyanide synthesis, or secondary metabolism global regulation with trees for housekeeping genes. The 14 loci displayed linkage disequilibrium, as housekeeping loci did, and all 12 protein-coding loci were subjected to purifying selection except for one positively-selected site in HcnA. Overall, the evolutionary history of Pseudomonas genes involved in synthesis of secondary antimicrobial metabolites important for biocontrol functions is in fact similar to that of housekeeping genes, and results suggest that they are ancestral in pseudomonads producing hydrogen cyanide and 2,4-diacetylphloroglucinol.  相似文献   

3.
Natto-like fermented soybean products are manufactured and consumed in many Asian countries. In this study, we isolated thirty-four Bacillus strains capable of producing gamma-polyglutamic acid (PGA) from natto in mountainous areas of South Asia and Southeast Asia and from soils in Japan. To elucidate the phylogeny of these PGA-producing strains, phylogenetic trees based on sequences of 16S rDNA, housekeeping genes of rpoB (RNA polymerase beta-subunit) and fus (elongation factor G) were constructed. A phylogenetic tree based on 16S rDNA sequences showed that twenty-one isolates were clustered in the same group of B. subtilis. The other thirteen isolates were located in the cluster of B. amyloliquefaciens. Phylogenetic trees based on the partial sequences of rpoB and fus genes were similar to the phylogeny based on 16S rDNA sequences. The results of the present study indicate that PGA-producing strains isolated from local natto in Asian countries and soil in Japan can be divided into two species, B. subtilis and B. amyloliquefaciens.  相似文献   

4.
5.
The type strains of 27 species of the genus Microbacterium, family Microbacteriaceae, were analyzed with respect to the phylogeny of the housekeeping genes coding for DNA gyrase subunit B (gyrB), RNA-polymerase subunit B (rpoB), recombinase A (recA) and polyphosphate kinase (ppk). The resulting gene trees were compared to the 16S rRNA gene phylogeny of the same species. The topology of neighbour-joining and maximum parsimony phylogenetic trees based upon nucleic acid sequences and protein sequences of housekeeping genes differed among each other and no gene tree was identical to that of the 16S rRNA gene tree. Only some species showed consistent clustering by all genes analyzed, but the majority of species branched with different neighbours in most gene trees. The failure to phylogenetically cluster type strains into two groups based upon differences in the amino acid composition of peptidoglycan on the basis of 16S rRNA gene sequence similarity, once leading to the union of the genera Microbacterium and Aureobacterium, was also seen in the analysis of recA, rpoB and gyrB gene and protein phylogenies. Analysis of the pkk gene and protein as well as of a concatenate tree, combining sequences of all five genes (total of 3.700 nucleotides), sees members of the former genus Aureobacterium and other type strains with lysine as diagnostic diamino acid to form a coherent cluster that branches within the radiation of Microbacterium species with ornithine in the peptidoglycan.  相似文献   

6.
The type strains of 32 species of 13 genera of the family Microbacteriaceae were analysed with respect to gene-coding phylogeny for DNA gyrase subunit B (gyrB), RNA-polymerase subunit B (rpoB), recombinase A (recA), and polyphosphate kinase (ppk). The resulting gene trees were compared with the 16S rRNA gene phylogeny of the same strains. The topology of neighbour-joining and maximum parsimony phylogenetic trees, based on nucleic-acid sequences and protein sequences of housekeeping genes, differed from one another, and no gene tree was identical to that of the 16S rRNA gene tree. Most genera analysed containing >1 strain formed phylogenetically coherent taxa. The three pathovars of Curtobacterium flaccumfaciens clustered together to the exclusion of the type strains of other Curtobacterium species in all DNA - and protein-based analyses. In no tree did the distribution of a major taxonomic marker, i.e., diaminobutyric acid versus lysine and/or ornithine in the peptidoglycan, or acyl type of peptidoglycan, correlate with the phylogenetic position of the organisms. The changing phylogenetic position of Agrococcus jenensis was unexpected: This strain defined individual lineages in the trees based on 16S rRNA and gyrB and showed identity with Microbacterium saperdae in the other three gene trees.  相似文献   

7.
DnaK is the 70 kDa chaperone that prevents protein aggregation and supports the refolding of damaged proteins. Due to sequence conservation and its ubiquity this chaperone has been widely used in phylogenetic studies. In this study, we applied the less conserved part that encodes the so-called alpha-subdomain of the substrate-binding domain of DnaK for phylogenetic analysis of rhizobia and related non-symbiotic alpha-Proteobacteria. A single 330 bp DNA fragment was routinely amplified from DNA templates isolated from the species of the genera, Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium, but also from some non-symbiotic alpha Proteobacteria such as Blastochloris, Chelatobacter and Chelatococcus. Phylogenetic analyses revealed high congruence between dnaK sequences and 16S rDNA trees, but they were not identical. In contrast, the partition homogeneity tests revealed that dnaK sequence data could be combined with other housekeeping genes such as recA, atpD or glnA. The dnaK trees exhibited good resolution in the cases of the genera Mesorhizobium, Sinorhizobium and Rhizobium, even better than usually shown by 16S rDNA phylogeny. The dnaK phylogeny supported the close phylogenetic relationship of Rhizobium galegae and Agrobacterium tumefaciens (R. radiobacter) C58, which together formed a separate branch within the fast-growing rhizobia, albeit closer to the genus Sinorhizobium. The Rhizobium and Sinorhizobium genera carried an insertion composed of two amino acids, which additionally supported the phylogenetic affinity of these two genera, as well as their distinctness from the Mesorhizobium genus. Consistently with the phylogeny shown by 16S-23S rDNA intergenic region sequences, the dnaK trees divided the genus Bradyrhizobium into three main lineages, corresponding to B. japonicum, B. elkanii, and photosynthetic Bradyrhizobium strains that infect Aeschynomene plants. Our results suggest that the 330 bp dnaK sequences could be used as an additional taxonomic marker for rhizobia and related species (alternatively to the 16S rRNA gene phylogeny).  相似文献   

8.
Sequences from gapA, gyrA and ompA were used to evaluate the relationships of the enterobacterial plant pathogens, and assess whether a robust phylogeny can be ascertained using this group of housekeeping genes. Up to 48 taxa were included in a combined phylogenetic analysis to explore the evolutionary distribution of plant pathogenic species across the family Enterobacteriaceae. Phylogenies were reconstructed from gapA, gyrA and ompA gene sequences using maximum parsimony and maximum likelihood algorithms, and phylogenetic congruence was evaluated by the incongruence length difference test and the partition addition bootstrap alteration approach. The resulting gene trees were found to be incongruent, with gapA supporting a monophyletic origin for the plant pathogenic species. In contrast, gyrA and ompA supported multiple polyphyletic origins of Erwinia, Brenneria, Pectobacterium and Pantoea in conjunction with a previously published 16S rDNA phylogeny. However, none of the trees (not even the published 16S rDNA gene tree) supports the current taxonomic classification of these genera into four clades, with Pantoea forming the only monophyletic group in the gapA, gyrA and 16S rDNA trees. Finally, the gapA, gyrA and previously published 16S rDNA phylogenies differ in the taxonomic placement of several bacterial strains which are separated in the three trees. The observed incongruence among the four gene histories is likely to be the result of horizontal transfer events, confounding the search for a robust set of housekeeping genes with a shared evolutionary history that could be used to confidently characterize the relationships of the plant pathogenic enterobacteria. © The Willi Hennig Society 2010.  相似文献   

9.
Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.  相似文献   

10.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

11.
张国萍  王蔚  朱世杰  申煜  常弘 《四川动物》2005,24(4):500-506
鹳形目鸟类的传统分类一直存在分歧,而近期的分子系统学研究大多只用单个基因,其结论的可信度需要进一步验证.本文通过核c-mos基因和线粒体12S rRNA基因序列分别和合并分析,采用分子系统学方法探讨了鹳形目6科12种鸟类的系统发生关系.文中测出鹳形目鸟类6种核c-mos基因的片断序列,结合来自Genebank的其他种类的c-mos和12S rRNA基因序列,分别经Clustal W软件对位排列后,以原鸡为外类群用最大似然法、邻接法和最大简约法建立系统树.系统树分析表明, 鹳形目6科之间的系统发生关系总结为:(鹭科,((鹮科,美洲鹫科),(鹳科,(鲸头鹳科,锤头鹳科)))).鹭科7个属之间的系统发生关系总结为:(麻(开鸟)属(夜鹭属(池鹭属(苍鹭属(中白鹭属(白鹭属,大白鹭属)))))).分别基于两个单基因的系统树有一定差异,而基于合并数据的系统树支持率和分辨率都高于基于单基因的系统树,表明使用在遗传上相对独立的分子数据合并建立系统树有较高的可信度和分辨率,是一种更好的研究方法.  相似文献   

12.
ABSTRACT. Peritrich ciliates have been traditionally subdivided into two orders, Sessilida and Mobilida within the subclass Peritrichia. However, all the existing small subunit (SSU) rRNA phylogenetic trees showed that the sessilids and mobilids did not branch together. To shed some light on this disagreement, we tested whether or not the classic Peritrichia is a monophyletic group by assessing the reliability of the SSU rRNA phylogeny in terms of congruency with α‐tubulin phylogeny. For this purpose, we obtained 10 partial α‐tubulin sequences from peritrichs and built phylogenetic trees based on α‐tubulin nucleotide and amino acid data. A phylogenetic tree from the α‐tubulin and SSU rRNA genes in combination was also constructed and compared with that from the SSU rRNA gene using a similar species sampling. Our results show that the mobilids and sessilids are consistently separated in all trees, which reinforces the idea that the peritrichs do not constitute a monophyletic group. However, in all α‐tubulin gene trees, the urceolariids and trichodiniids do not group together, suggested mobilids may not be a monophyletic group.  相似文献   

13.
DNA sequence of the tryptophan synthase genes of Pseudomonas putida   总被引:6,自引:0,他引:6  
I P Crawford  L Eberly 《Biochimie》1989,71(4):521-531
Genes encoding the 2 subunits of tryptophan synthase in Pseudomonas putida have been identified and cloned by their similarity to the corresponding genes in Pseudomonas aeruginosa. The deduced amino acid sequences were confirmed by comparison with regions ascertained earlier by protein sequencing. The Pseudomonas amino acid sequences are 85% identical for the beta subunit and 70% identical for the alpha subunit. These sequences are compared to those of Salmonella typhimurium, where the structure is known from X-ray crystallography. Although amino acid conservation drops to 54% and 36% for the beta and alpha subunits, only 3 single residue gaps are required to maintain alignment throughout and most of the residues identified as important for catalysis or cofactor binding are conserved. The 23 residues surrounding the beta chain lysine that enters into a Schiff base linkage with the pyridoxal phosphate cofactor are compared in 13 species, including representatives from the eukaryotic and both prokaryotic kingdoms; appreciable conservation is apparent. The approximately 100 base pairs separating the trpB gene from its divergently transcribed activator gene are similar in the 2 pseudomonads, but do not resemble those of any other bacterium or fungus studied to date.  相似文献   

14.
Conserved genes have found their way into the mainstream of molecular systematics. Many of these genes are members of multigene families. A difficulty with using single genes of multigene families for phylogenetic inference is that genes from one species may be paralogous to those from another taxon. We focus attention on this problem using heat shock 70 (HSP70) genes. Using polymerase chain reaction techniques with genomic DNA, we isolated and sequenced 123 distinct sequences from 12 species of sharks. Phylogenetic analysis indicated that the sequences cluster with constituitively expressed cytoplasmic heat shock-like genes. Three highly divergent gene clades were sampled. A number of similar sequences were sampled from each species within each distinct gene clade. Comparison of published species trees with an HSP70 gene tree inferred using Bayesian phylogenetic analysis revealed several cases of gene duplication and differential sorting of gene lineages within this group of sharks. Gene tree parsimony based on the objective criteria of duplication and losses showed that previously published hypotheses of species relationships and two novel hypothesis based on Bayesian phylogenetics were concordant with the history of HSP70 gene duplication and loss. By contrast, two published hypotheses based on morphological data were not significantly different from the null hypothesis of a random association between species relatedness and the HSP70 gene tree. These results suggest that gene tree parsimony using data from multigene families can be used for inferring species relationships or testing published alternative hypotheses. More importantly, the results suggest that systematic studies relying on phylogenetic inferences from HSP70 genes may by plagued by unrecognized paralogy of sampled genes. Our results underscore the distinction between gene and species trees and highlight an underappreciated source of discordance between gene trees and organismal phylogeny, i.e., unrecognized paralogy of sampled genes.  相似文献   

15.
Gene sequence analysis of nirS and nirK, both encoding nitrite reductases, was performed on cultivated denitrifiers to assess their incidence in different bacterial taxa and their taxonomical value. Almost half of the 227 investigated denitrifying strains did not render an nir amplicon with any of five previously described primers. NirK and nirS were found to be prevalent in Alphaproteobacteria and Betaproteobacteria, respectively, nirK was detected in the Firmicutes and Bacteroidetes and nirS and nirK with equal frequency in the Gammaproteobacteria. These observations deviated from the hitherto reported incidence of nir genes in bacterial taxa. NirS gene phylogeny was congruent with the 16S rRNA gene phylogeny on family or genus level, although some strains did group within clusters of other bacterial classes. Phylogenetic nirK gene sequence analysis was incongruent with the 16S rRNA gene phylogeny. NirK sequences were also found to be significantly more similar to nirK sequences from the same habitat than to nirK sequences retrieved from highly related taxa. This study supports the hypothesis that horizontal gene transfer events of denitrification genes have occurred and underlines that denitrification genes should not be linked with organism diversity of denitrifiers in cultivation-independent studies.  相似文献   

16.
AIMS: To identify Bacillus species and related genera by fingerprinting based on ribosomal RNA gene restriction patterns; to compare ribosomal RNA gene restriction patterns-based phylogenetic trees with trees based on 16S rRNA gene sequences; to evaluate the usefulness of ribosomal RNA gene restriction patterns as a taxonomic tool for the classification of Bacillus species and related genera. METHODS AND RESULTS: Seventy-eight bacterial species which include 42 Bacillus species, 31 species from five newly created Bacillus-related genera, and five species from five phenotypically related genera were tested. A total of 77 distinct 16S rRNA gene hybridization banding patterns were obtained. The dendrogram resulting from UPGMA analysis showed three distinct main genetic clusters at the 75% banding pattern similarity. A total of 77 distinct 23S and 5S rRNA genes hybridization banding patterns were obtained, and the dendrogram showed four distinct genetic clusters at the 75% banding pattern similarity. A third dendrogram was constructed using a combination of the data from the 16S rRNA gene fingerprinting and the 23S and 5S rRNA genes fingerprinting. It revealed three distinct main phylogenetic clusters at the 75% banding pattern similarity. CONCLUSIONS: The Bacillus species along with the species from related genera were identified successfully and differentiated by ribosomal RNA gene restriction patterns, and most were distributed with no apparent order in various clusters on each of the three dendrograms. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data indicate that ribosomal RNA gene restriction patterns can be used to reconstruct the phylogeny of the Bacillus species and derived-genera that approximates, but does not duplicate, phylogenies based on 16S rRNA gene sequences.  相似文献   

17.
Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.  相似文献   

18.
19.
Although it is well known that there is no long range colinearity in gene order in bacterial genomes, it is thought that there are several regions that are under strong structural constraints during evolution, in which gene order is extremely conserved. One such region is the str locus, containing the S10-spc-alpha operons. These operons contain genes coding for ribosomal proteins and for a number of housekeeping genes. We compared the organisation of these gene clusters in 111 sequenced prokaryotic genomes (99 bacterial and 12 archaeal genomes). We also compared the organisation to the phylogeny based on 16S ribosomal RNA gene sequences and the sequences of the ribosomal proteins L22, L16 and S14. Our data indicate that there is much variation in gene order and content in these gene clusters, both in bacterial as well as in archaeal genomes. Our data indicate that differential gene loss has occurred on multiple occasions during evolution. We also noted several discrepancies between phylogenetic trees based on 16S rRNA gene sequences and sequences of ribosomal proteins L16, L22 and S14, suggesting that horizontal gene transfer did play a significant role in the evolution of the S10-spc-alpha gene clusters.  相似文献   

20.
On the basis of available nitrate reductase gene sequences primer pairs were designed to specifically amplify gene stretches of the beta-subunit of the membrane-bound nitrate reductase (narH). Additional sequences of this gene were amplified and sequenced from pure cultures of reference species and new isolates. The distribution and phylogeny of this gene in denitrifying and nitrate-reducing bacteria was analysed. Comparison of phylogenetic trees based on 16S rDNA sequences with those based on narH sequences revealed highly similar relationships of both genes from most of the bacteria analysed. Since highly conserved functional cysteine clusters within bacterial and archaeal narH sequences support a linear evolution from one common progenitor a long evolutionary history of the respiratory membrane-bound nitrate reductase can be inferred from our phylogenetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号