首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Physiological reaction and oxygen intake during exercise and recovery were measured in fourteen young female Japanese during the follicular phase of their menstrual cycle at 25 degree C with 50% relative humidity and at 35 degree C with 50% relative humidity. Subjects, clad in bathing suits only, performed a bicycle ergometer exercise at a constant work load of 600 kg . m/min at a cycling rate of 50 rpm for 20 min and recovered while remaining on the bicycle ergometer for 40 min. The mean values of sweat volume and skin temperature were significantly greater at 35 degree C than at 25 degree C. It has been shown that heart rate and rectal temperature during exercise were slightly higher at 35 degree C than at 25 degree C, while those during recovery were significantly higher at 35 degree C than at 25 degree C. Oxygen intake, oxygen debt, and the fall in diastolic blood pressure after exercise were considerably greater at 35 degree C than at 25 degree C. The increase in oxygen intake in a hot environment might result from an increased metabolism due to higher body temperature and increased energy requirement for heat dissipation such as profuse sweating, higher heart rate, and increased ventilatory volume. The increase in oxygen debt in a hot environment might reflect the increased metabolism caused by higher body temperature and the increased production of lactic acid in the working muscle as a result of an insufficient blood supply to the muscle. The increases in sweat volume, oxygen intake during exercise, and oxygen debt in women in a hot environment were considerably smaller than corresponding values for men. The smaller increase in sweat volume in women in a hot environment could reflect a smaller oxygen intake and a more marked dilation of skin vessels in women than in men.  相似文献   

4.
Eight physically fit men performed two incremental bicycle ergometer tests, one in an ambient temperature of 25 degrees C and the other at 40 degrees C. Oesophageal temperature (Tes) increased continuously throughout the tests up to 38.0 and 38.3 degrees C, respectively. In both environments, forearm blood flow (plethysmography) was linearly related to Tes above the Tes threshold for vasodilation, but at the heaviest work loads this relationship was clearly attenuated and therefore indicated skin vasoconstriction, which tended to be more pronounced at 25 degrees C. During recovery at 25 degrees C, in some subjects the forearm blood flow increased above the levels observed at the end of the graded exercise in spite of a decreasing Tes. Skin blood flow, measured by laser Doppler flow meter at the shoulder, was quantitatively different but, on average, seemed to reveal the same response pattern as the forearm blood flow. In spite of the higher level of skin blood flow in the heat, blood lactate accumulation did not differ between the two environments. The present results suggest that there is competition between skin vasoconstriction and vasodilation at heavy work rates, the former having precedence in a thermoneutral environment to increase muscle perfusion. During short-term graded exercise in a hot environment, skin vasoconstriction with other circulatory adjustments seems to be able to maintain adequate muscle perfusion at heavy work levels, but probably not during maximum exercise.  相似文献   

5.
The purpose of this investigation was to clarify the characteristics of body temperature regulation in paraplegics due to spinal cord injury (SCI) during an arm cranking exercise in a hot environment. Twelve paraplegics with lesions located between Th3 and L1,2 and seven able-bodied subjects (AB) participated in this study. The subjects were exposed to a hot (33 degrees C) or a moderate temperature (25 degrees C) environment for one hour and during the last 10 min of the exposure, the subjects performed arm cranking exercises at an exercise intensity of 40 W. The skin temperatures at the chest, the upper arm, the thigh and the calf, the tympanic membrane temperature (Tty), and the skin blood flow of the thigh (SBFT) were continuously monitored during the experiment. Although no systematical variation was found in the Tty at 25 degrees C, the Tty at 33 degrees C in paraplegics during exercise was significantly greater than that at rest (P < 0.01), which indicated a pronounced heat stress for paraplegics at 33 degrees C. SBFT of paraplegics with high lesions of the SCI remained unchanged during the experiment at 25 degrees C and 33 degrees C, while paraplegics with low lesions in this study showed consecutive increases in SBFT during exercise in both environmental conditions similar to AB. The increased core temperature in paraplegics with high lesions was considered to be due to a lack of sweat response and vasomotor activity in the paralyzed area. On the basis of the findings in this study, it can be suggested that high core temperature without any increment of SBFT may be characterized as body heat balance of paraplegics with high lesions during exercise in a hot environment.  相似文献   

6.
In order to determine whether exercise-induced profuse sweating could reduce urinary uric acid excretion, we simulated badminton players training and measured their uric acid in urine, sweat and blood during the training period. Thirteen male volunteers who were well-trained badminton players were recruited in this study. On the first 2 days and the last 2 days of the study period none of the subjects engaged in any intense exercise- or activity-inducing profuse sweat, but they accepted routine training 2 h per day during the middle 3 days. The results show that mean serum urate levels of thirteen volunteers rose significantly on day 4, when the concentrations increased by 18.2% over day 2 (P < 0.05). The mean ten-hour urinary uric acid excretion of seven volunteers on the 3 training days was significantly less at 178.5 micromol/day and 118.3 micromol/day than those on the preceding and subsequent days of the training days, respectively (P < 0.05). Furthermore, for six volunteers, the mean ratio of clearance of uric acid to creatinine was 6.6% on day 2, which significantly decreased to 5.4% on day 4 (P < 0.05). It is concluded profuse sweating exercise results in a decrease of urinary uric acid excretion amounts and leads to increased serum uric acid after the exercise. We suggest that persons who take vigorous exercise or are exposed to hot environments need drinking enough fluids to prevent dehydration and maintain adequate urinary output. People with profuse sweat after rigorous exercise are recommended taking sports drinks containing abundant sodium in order to decrease serum uric acid.  相似文献   

7.
Tympanic (Tty), mean skin (¯Tsk) and mean body (¯Tb) temperatures and heart rate (HR) increased more in low Vo2 max group (LG) than in high Vo2 max group (HG) during exercise. The regression coefficient of body temperatures (Tty and ¯Tb) on HR and the increased rate of heat storage were larger in LG than in HG during exercise. The local sweat rate (per min/cm2) during a hot water bath exhibited a considerable large quantity in comparison with the amount during exercise. Internal and skin temperatures during a hot water bath increased more immediately than those during exercise. The levels of comfort sensation during the preovulatory phase in women and pre-exercise period in men were higher at 40C than at 20C as peripheral thermal stimulus. The levels during the postovulatory and post-exercise phases in the same subjects were higher with the cool stimuli than with the warm stimuli. Above results suggest that thermoregulatory responses during submaximal exercise are different according to physical fitness and that these responses are different from those during hot water immersion. In addition, these suggest that the scores of thermal sensation with warm and cool stimuli are different during the pre- and post-ovulatory phases and the pre- and post-exercise periods.  相似文献   

8.
We evaluated the effects of the menstrual cycle and physical training on heat loss (sweating and cutaneous vasodilation) responses during moderate exercise in a temperate environment. Ten untrained (group U) and seven endurance-trained (group T) women (maximal O2 uptake of 36.7+/-1.1 vs. 49.4+/-1.7 ml.kg-1.min-1, respectively; P<0.05) performed a cycling exercise at 50% maximal O2 uptake for 30 min during both the midfollicular and midluteal menstrual phase in a temperate environment (ambient temperature of 25 degrees C, relative humidity of 45%). In group U, plasma levels of estrone, estradiol, and progesterone at rest and esophageal temperature (Tes) during exercise were significantly higher during the midluteal than during the midfollicular phase (P<0.05). Sweating rate and cutaneous blood flow (measured via laser-Doppler flowmetry) on the chest, back, forearm, and thigh were lower during the midluteal than during the midfollicular phase during exercise. Tes threshold for heat loss responses was significantly higher and sensitivity of the heat loss responses was significantly lower in the midluteal than in the midfollicular phase, regardless of body site. These effects of the menstrual cycle in group U were not observed in group T. The sweating rate and cutaneous blood flow were significantly higher in group T than in group U, regardless of menstrual phase or body site. Tes threshold for heat loss responses was significantly lower and sensitivity of heat loss responses was significantly greater in group T than in group U in the midluteal phase; however, sensitivity of the sweating response was significantly greater in the midfollicular phase. These results suggest that heat loss responses in group U were inhibited in the midluteal phase compared with in the midfollicular phase. Menstrual cycle had no remarkable effects in group T. Physical training improved heat loss responses, which was more marked in the midluteal than in the midfollicular phase.  相似文献   

9.
Effects of sleep deprivation and season on thermoregulation during 60 min. of leg-bathing (water temperature of 42 degrees C, air temperature of 30 degrees C, and relative humidity of 70%) were studied in eight men who completed all 4 experiments for normal sleep and sleep deprivation in summer and winter. Rectal temperature (T(re)), skin temperature, total body sweating rate (M(sw-t)), local sweating rate on the back (M(sw-back)) and forearm (M(sw-forearm)), and skin blood flow on the back (SBF(back)) and forearm (SBF(forearm)) were measured. The changes in T(re) (DeltaT(re)) were smaller (P<0.05) for sleep deprivation than for normal sleep regardless of the season. This decrease in DeltaT(re) was significant only in summer (P<0.05). Mean skin temperature (T(mean of)(sk)) was higher (P<0.05) for sleep deprivation than for normal sleep regardless of the season. M(sw-t) was smaller (P<0.05) for sleep deprivation than for normal sleep regardless of season, although M(sw-back) and M(sw-forearm) were similar. SBF(back) and SBF(forearm) tended to be higher for sleep deprivation than normal sleep. The sensitivity of SBF to T(re) was higher (P<0.05) for sleep deprivation than for normal sleep. These data indicate that seasonal differences in thermoregulation were small because of morning time. Sleep deprivation increased dry heat loss and restrained T(re) rise, in spite of decreased sweating rate.  相似文献   

10.

1. 1. The purpose of this study was to investigate the effects of thermal radiation and wind on thermal responses at rest and during exercise in a cold environment.

2. 2. The experimental conditions were radiation and wind (R + W), no radiation and wind (W), radiation and no wind (R), no radiation and no wind (C).

3. 3. The air temperature was −5°C. Thermal radiation was 360 W/m2. Air velocities were 0.76, 1.73 and 2.8 m/s. Rectal and skin temperatures, heart rate and oxygen consumption were recorded. Thermal and comfort sensations were questioned.

4. 4. There are no significant effects of thermal radiation and wind on the physiological responses except the mean skin temperature. There are significant effects on the mean skin temperature (P < 0.01) and thermal sensation (P < 0.05).

Author Keywords: Thermal responses; wind; thermal radiation; exercise; cold environment  相似文献   


11.
In female rats, rectal temperature (Tre), tail vasomotor response, oxygen uptake (VO2), and carbon dioxide production (VCO2) were measured in proestrus and estrus stages during treadmill running at two different speeds at an ambient temperature (Ta) of 24 degrees C. Experiments were performed at 2.00-6.00 a.m., when the difference in Tre was greatest between the two stages; Tre at rest in the estrus stage was 0.54 degrees C higher than in the proestrus stage. In a mild warm environment, threshold Tre for a rise in tail skin temperature (Ttail) was also higher in the estrus stage than in the proestrus stage. In contrast, no difference was seen in the threshold Tre and steady state Tre at the end of exercise between proestrus and estrus stages. These values were higher at the higher work intensity. VO2 was also similar between the two stages, except in the second 5 min after the beginning of exercise, when VO2 was greater and Tre rose more steeply in the proestrus stage. These data indicate that deep body temperature during exercise is regulated at a certain level depending on the work intensity and is not influenced by the estrus cycle.  相似文献   

12.
Exercising or working in a hot, humid environment can results in the onset of heat-related illness when an individual''s temperature is not carefully monitored. The purpose of the present study was to compare three techniques (data loggers, thermal imaging, and wired electrodes) for the measurement of peripheral (bicep) and central (abdominal) skin temperature. Young men and women (N = 30) were recruited to complete the present study. The three skin temperature measurements were made at 0 and every 10-min during 40-min (60% VO2max) of cycling in a hot (39±2°C), humid (45±5% RH) environment. Data was statistically analyzed using the Bland-Altman method and correlation analysis. For abdominal skin temperature, the Bland-Altman limits of agreement indicated that data loggers (1.5) were a better index of wired than was thermal imaging (3.5), For the bicep skin temperature the limits of agreement was similar between data loggers (1.9) and thermal (1.9), suggesting the both were suitable measurements. We also found that when skin temperature exceeded 35°C, we observed progressively better prediction between data loggers, thermal imaging, and wired skin sensors. This report describes the potential for the use of data loggers and thermal imaging to be used as alternative measures of skin temperature in exercising, human subjects.  相似文献   

13.
14.
This study was aimed to evaluate the possible changes caused by a single bout of moderate-intensity exercise in a hot environmental temperature on the immune function and on inflammatory markers. A total of 22 young male adults (VO2max, 55.4±3.6 ml·kg?1·min?1) volunteered to participate in an exercise session of 60 minutes on a treadmill ergometer at moderate speed (60% of the maximum aerobic speed) in hot environmental conditions (35°C and humidity 60%). Total leukocyte numbers, lymphocyte subsets (CD8+, CD4+, CD3+, NK and CD19+), cytokine production capacity by peripheral blood mononuclear cells (PBMCs) (IL-2, IL-4, IL-5, IL-10, IFN-γ and TNF-α) as well as the concentration of several inflammation related proteins (ceruloplasmin, C-reactive protein (CRP), complement factors C3 and C4) were evaluated before and after exercise. The results show that leukocyte and neutrophil absolute values increased (P<0.001) after the exercise period. In contrast, eosinophil values decreased (P<0.05) after the exercise. In addition, ceruloplasmin, C3 and C4 values (P<0.05) increased after exercise. No changes in T lymphocyte subsets, cytokine production, or CRP were observed. These data confirm previous studies suggesting that a 60 min exercise in a hot environment is enough to cause a physiologic adaptation to these special conditions leading to an increase of non-specific immune cells and promoting inflammatory processes. On the other hand, PCR values, lymphocyte subsets and the capacity of cytokine production by PBMC were not changed in a relatively short bout of exercise under these conditions in contrast with previous studies.  相似文献   

15.
To evaluate the metabolic and hormonal adaptations following a rapid change in muscle glycogen availability, 14 subjects had their muscle glycogen content increased in one leg (IG) and decreased in the other (DG). In group A (n = 7), subjects exercised on a bicycle ergometer at 70% maximal oxygen uptake for 20 min using the DG leg. Without resting these same subjects exercised another 20 min using the IG leg. Subjects in group B (n = 7) followed the same single-leg exercise protocol but in the reverse order. In order to get some information on the time sequence of these possible adaptations, blood samples were collected at rest and at the beginning and the end of each exercise period (min 5, 20, 25, and 40). Results indicated that 5 min after the switch from the DG leg to the IG leg, transient increases in plasma free fatty acids (1.20 to 1.39 meq X 1(-1)) and serum insulin (10.1 to 12 mu X 1(-1)) concentrations occurred. Between minute 25 and 40 of exercise, the DG to IG switch was accompanied by a decrease in free fatty acids and glycerol concentrations as well as an increase in lactate levels. An opposite response was observed in the IG to DG condition during the same time span. Plasma norepinephrine, epinephrine, glucagon, and serum cortisol concentrations were not significantly affected by the leg change. These results suggest a rapid preferential use of muscle glycogen when available and a time lag in the response of the extramuscular substrate mobilization factors.  相似文献   

16.
K B Pandolf  E Kamon 《Life sciences》1974,14(1):187-198
Ventilatory gas exchange ratio (R), V?O2, ventilation (V?E), respiration rate (RR), rectal temperature (Tre), and heart rate (HR) were determined for four acclimatized subjects during intermittent and prolonged exercise on a treadmill at 24° and 45°C (dry) as follows: 1) 8 cycles (10 min. exercise and 5 min. rest), and 2) prolonged exercise lasting for 90 min. While during intermittent and prolonged exercise, V?O2 and V?E did not differ in the heat, RR, Tre, HR and the respiratory dead space were higher in the hot ambient environment. After steady-state attainment, exercise R was higher in the initial as compared to the last cycles with higher values in neutral as compared to the hot ambient condition. It was concluded that heat was more effective than time in lowering the R, probably with a greater dependence on fat oxidation in the latter exercise cycles which seemed to be more pronounced in the heat.  相似文献   

17.
18.
19.
To investigate the effects of hyperthermia and facial fanning during hyperthermia on hand-grip exercise performance and thermoregulatory response, we studied eight male subjects, aged 20-53 years. Subjects exercised at 20% of maximal hand-grip strength in the sitting position under three conditions: normothermia (NT), hyperthermia without fanning (HT-nf) or with fanning at 5.5 m X sec-1 wind speed (HT-f). Hyperthermia (0.5 degrees C higher oesophageal temperature than in NT) was induced by leg immersion in water at 42 degrees C. Mean exercise performance was markedly reduced from 716 contractions (NT) to 310 (HT-nf) by hyperthermia (P less than 0.01) and significantly (P less than 0.05) improved to 431 (HT-f) by facial fanning. Hyperthermic exercise was accompanied by significant increases in forearm blood flow (71%) and the local sweat rate on the thigh (136%) at the end of exercise compared with that in NT. Heart rate (HR) and rating of perceived exertion (RPE) increased during exercise and were higher in HT-nf than in NT at any given time of exercise. Oesophageal, tympanic (Tty) and mean skin temperatures were also significantly higher in HT-nf than in NT. Facial fanning caused a marked decrease in forehead skin temperature (1.5-2.0 degrees C) and a slight decrease in Tty, HR and PRE compared with that in HT-nf at any given time of exercise. These results suggested that hyperthermia increased thermoregulatory demands and reduced exercise performance. Facial fanning caused decreases in face skin and brain temperatures, and improved performance.  相似文献   

20.
The purpose of this study was to determine the effects creatine (Cr) loading may have on thermoregulatory responses during intermittent sprint exercise in a hot/humid environment. Ten physically active, heat-acclimatized men performed 2 familiarization sessions of an exercise test consisting of a 30-minute low-intensity warm-up followed by 6 x 10 second maximal sprints on a cycle ergometer in the heat (35 degrees C, 60% relative humidity). Subjects then participated in 2 different weeks of supplementation. The first week, subjects ingested 5 g of a placebo (P, maltodextrin) in 4 flavored drinks (20 g total) per day for 6 days and were retested on day 7. The second week was similar to the first except a similar dose (4 x 5 g/day) of creatine monohydrate (Cr) replaced maltodextrin in the flavored drinks. Six days of Cr supplementation produced a significant increase in body weight (+1.30 +/- 0.63 kg), whereas the P did not (+0.11 +/- 0.52 kg). Compared to preexercise measures, the exercise test in the heat produced a significant increase in core temperature, a loss of body water determined by body weight change during exercise, and a relative change in plasma volume (%PVC); however, these were not significantly different between P and Cr. Sprint performance was enhanced by Cr loading. Peak power and mean power were significantly higher during the intermittent sprint exercise test following 6 days of Cr supplementation. It appears that ingestion of Cr for 6 days does not produce any different thermoregulatory responses to intermittent sprint exercise and may augment sprint exercise performance in the heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号