首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver microsomal membranes contain a reduced-glutathione-dependent protein(s) that inhibits lipid peroxidation in the ascorbate/iron microsomal lipid peroxidation system. It appears to exert its protective effect by scavenging free radicals. The present work was carried out to assess the effect of this reduced-glutathione-dependent mechanism on carbon tetrachloride-induced microsomal injury and on carbon tetrachloride metabolism because they are known to involve free radicals. Rat liver microsomes were incubated at 37 degrees C with NADPH, EDTA and carbon tetrachloride. The addition of 1 mM-reduced glutathione (GSH) markedly inhibited lipid peroxidation and glucose 6-phosphatase inactivation and, to a lesser extent, inhibited cytochrome P-450 destruction. GSH also inhibited covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. These results indicate that a GSH-dependent mechanism functions to protect the microsomal membrane against free-radical injury in the carbon tetrachloride system as well as in the iron-based systems. Under anaerobic conditions, GSH had no effect on chloroform formation, carbon tetrachloride-induced destruction of cytochrome P-450 or covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. Thus, the GSH protective mechanism appears to be O2-dependent. This suggests that it may be specific for O2-based free radicals. This O2-dependent GSH protective mechanism may partly underlie the observed protection of hyperbaric O2 against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity.  相似文献   

2.
The conversion of free lignoceric acid and sphingosine to lignoceroyl sphingosine (ceramide) by rat brain particulate fraction and two cytosolic factors, one heat-stable and the other heat-labile, requires pyridine nucleotide. This enzymatic reaction is apparently different from two previously published enzymic reactions, microsomal sphingosine:acyl CoA acyltransferase and the reverse reaction of lysosomal ceramidase. The reaction is strongly inhibited by common respiratory chain inhibitors, KCN, Antimycin A and sodium azide, this indicates the involvement of an electron-transfer system. From these observations it appears that the brain ceramide synthesis described above is catalyzed by an enzyme system which involves a mechanism for amide formation which has not been previously characterized.  相似文献   

3.
The arylcyclopropanes (cyclopropylarenes) cyclopropylbenzene and diphenylcyclopropane are oxidized by rabbit liver microsomal cytochrome P-450, both by the microsomal fraction and by the purified cytochrome in a reconstituted system. The products formed, principally benzoic acid, are due to an unusual triple oxidation of the substrate, which probably remains attached to the active site during the several steps of the oxidation. Both substrates were found to be inhibitors of the cytochrome P-450-dependent O-de-ethylation of 7-ethoxycoumarin. Model oxidation studies with cumene hydroperoxide as oxidizing agent and rabbit liver microsomal fraction as source of enzyme gave similar products to the microsomal and reconstituted systems. The significance of these results in the mechanism of oxidation catalysed by cytochrome P-450 is discussed.  相似文献   

4.
Abstract: An enzymic lipid peroxidation system has been demonstrated in the microsomal fraction of rat brain and the requirements and optimal conditions for assay determined. The involvement of NADPH-cytochrome c reductase was demonstrated in vesicles reconstituted with lipids extracted from the brain microsomal fraction. Further characterization of the system made use of substances shown to inhibit the liver microsomal system. α-Tocopherol was shown to be an effective inhibitor of lipid peroxidation in the brain microsomal system, whereas Na2SO3 had no effect, which is indicative that free radical transfer occurs only in the hydrophobic regions. Neither superoxide dismutase nor catalase inhibited lipid peroxidation. The implications of an NADPH-cytochrome c reductase-dependent lipid peroxidation system that is not linked to a drug hydroxylation system and appears to differ from the liver microsomal system in a number of other ways are discussed.  相似文献   

5.
Elongation of fatty acids by microsomal fractions obtained from rat brain was measured by the incorporation of [2-14C]malonyl-CoA into fatty in the presence of palmitoyl-CoA or stearoyl-CoA. 2. Soluble and microsomal fractions were prepared from 21-day-old rats; density gradient centrifugation demonstrated that the stearoyl-CoA elongation system was localized in the microsomal fraction whereas fatty acid biosynthesis de novo from acetyl-CoA occurred in the soluble fraction. The residual activity de novo in the microsomal fraction was attributed to minor contamination by the soluble fraction. 3. The optimum concentration of [2-14C]malonyl-CoA for elongation of fatty acids was 25 mum for palmitoyl-CoA or stearoyl-CoA, and the corresponding optimum concentrations for the two primer acyl-CoA esters were 8.0 and 7.2 muM respectively. 4. Nadph was the preferred cofactor for fatty acid formation from palmitoyl-CoA or stearoyl-CoA, although NADH could partially replace it. 5. The stearoyl-CoA elongation system required a potassium phosphate buffer concentration of 0.075M for maximum activity; CoA (1 MUM) inhibited this elongation system by approx. 30%. 6. The fatty acids formed from malonyl-CoA and palmitoyl-CoA had a predominant chain length of C18 whereas stearoyl-CoA elongation resulted in an even distribution of fatty acids with chain lengths of C20, C22 and C24. 7. The products of stearoyl-CoA elongation were identified as primarily unesterified fatty acids. 8. The developmental pattern of fatty acid biosynthesis by rat brain microsomal preparations was studied and both the palmitoyl-CoA and stearoyl-CoA elongation systems showed large increases in activity between days 10 and 18 after birth.  相似文献   

6.
12-Hydroxyeicosatetraenoic acid (12-HETE) is formed from arachidonic acid either by 12-lipoxygenase or by a cytochrome P450 monooxygenase. 12-Lipoxygenase is generally localized in the soluble cytosolic fraction, and the cytochrome P450 monooxygenase is a microsomal enzyme. In this study, 12-HETE biosynthesis and the regulation of 12-HETE biosynthesis by epidermal growth factor (EGF) in A431 cells were investigated. 12-HETE was biosynthesized from arachidonic acid by the microsomal fraction of A431 cells, but not by the cytosolic fraction. The formation of 12-HETE was inhibited by 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and caffeic acid. Nordihydroguaiaretic acid at 10(-4) M and 5,8,11,14-eicosatetraynoic acid at 10(-5) M almost completely inhibited its formation. However, the formation of 12-HETE was not affected by the presence of an NADPH-generating system, carbon monoxide, or SKF 525A. The biosynthetic 12-HETE was analyzed by chiral stationary phase high performance liquid chromatography and was highly enriched in (12S)-HETE. We therefore concluded that the enzyme responsible for the formation of (12S)-HETE in the microsomes of A431 cells is a 12-lipoxygenase. The microsomal 12-lipoxygenase of A431 cells belongs to the "leukocyte-type" enzyme as determined by substrate specificity and enzyme kinetics studies. The microsomal 12-lipoxygenase oxygenated linoleic acid much faster than the cytosolic platelet 12-lipoxygenase and is a "self-catalyzed inactivation" enzyme. Treatment of cells with 50 ng/ml EGF significantly induced microsomal 12-lipoxygenase activity. The lag period for the expression of the stimulatory effect of EGF on 12-lipoxygenase activity was approximately 10 h. The stimulatory effect of EGF on 12-lipoxygenase activity was completely blocked by treatment with 35 microM cycloheximide, indicating a requirement for de novo protein biosynthesis. Furthermore, the presence of the endogenous inhibitor of 12-lipoxygenase (which masked (12S)-HETE biosynthesis in intact cells) was identified in the cytosolic fraction of A431 cells. The putative inhibitor was enzyme-selective. It inhibited the leukocyte-type 12-lipoxygenase, but not the "platelet-type" enzyme.  相似文献   

7.
A low molecular weight, microsome-bound fraction increases withtime as excised (injured) etiolated cotton hypocotyls are exposedto ambient air. This fraction can be separated from washed microsomalpreparations by dialysis or gel filtration. Data indicate thatascorbate is present in this fraction whose formation can beprevented by immediately immersing the excised tissues in abuffered solution of cyanide and metabisulphite ions. The activities of two microsomal enzyme systems are alteredas the result of the formation of this fraction. The ratio ofnon-cellulosic/cellulosic glucosyl linkages synthesized fromUDP-glucose is increased two to five times. Reciprocal plotsof the N-demethylation of a urea herbicide indicate inhibitionin a non-competitive, curvilinear manner when NADPH is the variablesubstrate. Evidence is presented to suggest that ascorbate mayfunction (directly or indirectly) as a regulatory agent in thecontrol of microsomal detoxication and biosynthesis after injuryto the plant.  相似文献   

8.
In the liver, it appears that there are two different pathways for vitamin K reduction. One pathway is irreversibly inhibited by coumarin anticoagulant drugs. The other pathway has been shown in the present study to be composed of enzymes that are not effected by physiological 'in vivo' concentrations of these drugs. This pathway appears to be responsible for the antidotal effect of vitamin K in overcoming coumarin poisoning. In rat liver the pathway has been shown to be composed of DT-diaphorase (EC.1.6.99.2) and a microsomal dehydrogenase(s). The activity of the microsomal dehydrogenase(s) was 3.6-fold higher with NADH than with NADPH present in the test system. It appears that this enzyme is the physiologically important enzyme in the pathway. In contrast with DT-diaphorase, this enzyme(s) is shown to be tightly associated with the mirosomal membrane. The enzyme(s) is not identical with either of the quinone-reducing enzymes cytochrome P-450 reductase or cytochrome-b5 reductase. Our data thus postulate the existence of an as-yet-unidentified microsomal dehydrogenase that appears to have an important function in the pathway.  相似文献   

9.
The site of synthesis of 1,2-disaturated-(diacyl)-sn-glycero-3-phosphocholine (Sat2PC) in mouse alveolar type II cell adenomas has been studied by conducting pulse-chase experiments. Isolation of microsomal and lamellar body fractions from adenomas after a 20-min pulse with [methyl-3H]choline demonstrates that Sat2PC first appears in the microsomal fraction, and after a short lag subsequently appears in the lamellar body fraction. The kinetics of labeling of Sat2PC are consistent with the microsomal membranes functioning as the subcellular site of synthesis for this pulmonary surfactant phospholipid. Short term labeling experiments with [9,10-3H]palmitate demonstrate that this fatty acid is incorporated into the sn-2 position of Sat2PC at a faster rate than its incorporation into the sn-1 position. This finding indicates that the synthesis of Sat2PC occurs by a deacylation-reacylation mechanism.  相似文献   

10.
The hepatic microsomal Ca2+- and Mg2+-dependent ATPase phosphoenzyme intermediates were distinguished by using the chelators EGTA and CDTA (trans-cyclohexane-1,2-diamine-NNN'N'-tetra-acetic acid). The Ca2+-ATPase intermediate is a hydroxylamine-labile base-labile 125 000-Mr phosphoprotein. The Mg2+-ATPase intermediate is a hydroxylamine-stable base-stable 30 000-Mr phosphoprotein. This enzyme intermediate probably reflects the large basal ATPase activity of hepatic microsomal fraction. It is dependent on Mg2+, since formation of the phosphoenzyme is abolished in the presence of CDTA. Under these conditions, the basal ATPase activity is dramatically decreased. These data demonstrate two separate and distinct enzymes which are responsible for the two ATPase activities of hepatic microsomal fraction. Furthermore, these data indicate that more meaningful data about the microsomal Ca2+-ATPase might be obtained if the free ion concentrations are controlled with CDTA.  相似文献   

11.
Hepatic microsomes catalyze the oxidation of methanol, ethanol, propanol and butanol to their respective aldehydes. The reaction requires molecular oxygen and NADPH and is inhibited by CO, sharing thereby properties with other microsomal drug oxidations. This microsomal alcohol oxidizing system increases in activity after chronic ethanol consumption and operates independently from catalase as well as alcohol dehydrogenase. It appears responsible, at least in part, for the alcohol metabolism by the alcohol dehydrogenase independent pathway of the liver.  相似文献   

12.
Highly purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver, when reconstituted with Gunn-rat liver microsomes (microsomal fraction), was able to catalyse the conversion of unesterified bilirubin into both bilirubin monoglucuronide and diglucuronide. Under zero-order kinetic conditions for monoglucuronide formation, the fraction of bilirubin diglucuronide formed by incubation of bilirubin with the reconstituted highly purified transferase accounted for 18% of total bilirubin glucuronides, which was only slightly lower than the fraction of diglucuronides (23% of total bilirubin glucuronides) formed by incubation with hepatic microsomes in the presence of UDP-N-acetylglucosamine or Lubrol. The reconstituted purified enzyme also catalysed the UDP-glucuronic acid-dependent conversion of bilirubin monoglucuronide into diglucuronide and, when bilirubin was incubated with UDP-glucose or UDP-xylose, the formation of bilirubin glucosides and xylosides respectively. These results suggest that a single microsomal bilirubin UDP-glycosyltransferase may be responsible for the formation of bilirubin mono- and di-glycosides.  相似文献   

13.
Treatment of microsomal membranes from cotyledons of Phaseolus vulgaris with ozone raises the liquid-crystalline to gel lipid phase transition temperature and results in the formation of distinct domains of gel phase lipid in the membranes. Liposomes prepared from the total lipid extracts of ozone-treated membranes undergo phase separations just a few degrees below the transition temperature for intact membranes, indicating that the formation of gel phase lipids is largely attributable to ozone-induced alterations in the membrane lipids. Levels of unsaturated fatty acids as well as the sterol to phospholipid ratio are markedly reduced in the ozone-treated membranes, and the neutral lipid fraction from treated membranes shows, an increased propensity to induce the formation of gel phase phospholipid when incorporated into liposomes of egg phosphatidylcholine. Since gel phase phospholipid also forms in naturally senescing plant membranes and appears to be attributable to changes in the neutral lipid fraction, the effects of natural senescence and ozone on membranes have been compared.  相似文献   

14.
Studies of the metabolism of carbon disulfide by rat liver microsomes   总被引:1,自引:0,他引:1  
R R Dalvi  R E Poore  R A Neal 《Life sciences》1974,14(9):1785-1796
Carbon disulfide has been examined as a substrate for the hepatic mixed function oxidase enzyme system. These studies have revealed that carbonyl sulfide is formed when carbon disulfide is incubated with rat liver microsomes in the presence of NADPH. No carbonyl sulfide is formed in the absence of NADPH. The formation of carbonyl sulfide is inhibited when the reaction is carried out in an atmosphere containing carbon monoxide. The other product of the reaction leading to carbonyl sulfide formation appears to be a highly reactive form of sulfur which covalently binds to the microsomal membrane. A chemical mechanism for the mixed function oxidase catalyzed metabolism of carbon disulfide to carbonyl sulfide is proposed.  相似文献   

15.
The occurrence of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase in adult Hymenolepis diminuta was demonstrated. This activity was negligible in the cestode's cytosolic fraction but was noted when the mitochondrial or microsomal fraction served as the enzyme source. The predominant localization of HMG-CoA reductase activity was with the microsomal fraction. This fraction did not contain appreciable mitochondrial contamination based on the distribution of marker enzymes. The enzymatic nature of HMG-CoA conversion to mevalonic acid by either fraction was apparent because the reaction was heat labile and responded linearly to time of assay and protein content. The enzymatic reduction of HMG-CoA absolutely required NADPH when either fraction was assayed. The lesser activity of the mitochondrial fraction was membrane-associated. The predominant localization of HMG-CoA reductase activity with microsomal membranes and its separation with the membranous component of the mitochondrial fraction suggest that mitochondrial activity reflects the presence of microsomal membranes. In its predominant localization and pyridine nucleotide requirement, the cestode's HMG-CoA reductase activity resembles that of mammalian systems. The finding of HMG-CoA reductase provides an enzymatic mechanism for the intermediate conversion of HMG-CoA to mevalonic acid that would be needed for acetate-dependent isoprenoid lipid synthesis by adult H. diminuta.  相似文献   

16.
The biosynthesis of prostaglandin E(2) (PGE(2)) from [1-(14)C]arachidonic acid has been demonstrated in homogenates and subcellular fractions of human epidermis. This biosynthetic capacity is localized in the microsomal fraction, indicating the presence of an active prostaglandin synthetase system associated with membranes of the skin. The incorporation of (14)C from [1-(14)C]arachidonic acid into PGE(2) by the microsomal fraction was enhanced by EDTA. This apparent increase in (14)C incorporation into PGE(2) in the presence of EDTA could be due at least in part to its chelating properties of removing the divalent cations in the homogenate that enhance the selective formation of PGF(2alpha) and the suppression of the activity of epidermal phospholipase A, which causes the release of nonradioactive fatty acid precursors from endogenous phospholipids. This study has also demonstrated that the formation of PGE(2) from arachidonic acid by the microsomal fraction from human skin could be inhibited by polyunsaturated fatty acids, suggesting a possible regulatory role of fatty acids released from endogenous phospholipids on prostaglandin synthesis in this tissue. The inhibitory effects of some anti-inflammatory drugs on skin microsomal prostaglandin synthetase were also demonstrated in these studies. Results from these studies indicate that the skin is therefore a useful tissue for the study of mechanisms of prostaglandin biosynthesis and the mode of action of various anti-inflammatory drugs.  相似文献   

17.
Light emission during the action of prostaglandin synthetase   总被引:3,自引:0,他引:3  
Chemiluminescence has been observed during the incubation of polyunsaturated fatty acids with the microsomal fraction from sheep vesicular glands. The light emission can be attributed to the enzyme system responsible for prostaglandin synthesis on the basis of its localization, its substrate specificity, and its inhibition by indomethacin, aspirin, and dimercaptopropanol. The luminescence can be quenched by superoxide dismutase and β-carotene. Possible origins for the light emission are discussed.  相似文献   

18.
A study has been made to determine whether renal plasma membranes contain an HCO3 stimulated, ouabain insensitive Mg ATPase. Purified mitochondrial, microsomal and brush border membrane fractions have been isolated from rabbit kidney. The microsomal anion-sensitive ATPase activity appears to be entirely of mitochondrial origin on the basis of the effects of inhibitors of mitochondrial Mg ATPase. The brush border membrane fraction is contaminated with mitochondrial fragments and contains an Mg ATPase activity with low anion-sensitivity. Further purification of this fraction causes parallel decreases in anion-sensitivity of the Mg ATPase activity and in cytochrome c oxidase activity. These results indicate that conclusions previously reached by other investigators for a role of anion-sensitive Mg ATPase in the bicarbonate reabsorption of the proximal tubule may no longer be tenable.  相似文献   

19.
The present paper describes intracellular changes in ribonuclease specific activity during Ca2+-induced sporangium formation in the water mold Achlya bisexualis. The enzymes undergo a decrease in activity prior to crosswall formation followed by an increase in activity during spore cleavage. As spore discharge occurs the RNase activity again decreases. A large percentage of the nuclease activity is associated with a lysosomal-like fraction of the cell, but there is also considerably activity associated with nuclear and microsomal fractions. Addition of cycloheximide or actinomycin D at various times during development prevents further decrease or increase in the enzyme activity. Mixing of cell extracts from different developmental stages provides evidence that inhibitors or activators of the enzyme activity are not responsible for the activity levels evident at the different stages. There is a change in the total levels of presumptive mRNA during Ca2+-induced sporangial formation which appears to be associated with the patterns of RNase activity. Utilizing total cellular RNA and Poly(A)+ RNA with the crude ribonuclease preparations, no substrate specificity could be ascertained.  相似文献   

20.
The N-oxidation of NN-dimethylaniline was studied by using a reconstituted rabbit liver microsomal enzyme system consisting of highly purified cytochrome P-448, NADPH-cytochrome c reductase and lipid factor. Both cytochrome P-448 and NADPH-cytochrome c reductase were required for optimum N-oxygenating activity; the catalytic capacity of the reductase fraction for supporting N-oxide formation varied with the isolation procedure applied. Addition of microsomal lipids to the assay media stimulated N-oxidation of the arylamine. N-Oxide formation appeared to be not generally controlled by electron transfer from cytochrome b5 to cytochrome P-448. The present work confirms that cytochrome P-448 can mediate about 44% of the rabbit liver microsomal N-oxidation of NN-dimethylaniline, thus reinforcing the existence of at least two distinct tertiary amine N-oxidases, i.e. haemoprotein and flavoprotein oxidase, in liver microsomal fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号