首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucose-regulated protein grp94 is related to heat shock protein hsp90   总被引:12,自引:0,他引:12  
We report the sequence of a cDNA clone that encodes the C-terminal half of the hamster 94 X 10(3) Mr glucose-regulated protein, grp94. The amino acid sequence of this protein is about 50% homologous to Drosophila hsp83 and yeast hsp90, suggesting that grp94 and hsp90 have similar functional properties. Unlike hsp90, grp94 is associated with the endoplasmic reticulum. It has the same C-terminal tetrapeptide as two other luminal endoplasmic reticulum proteins, grp78 and protein disulphide isomerase. We suggest that this sequence forms part of a signal for retention of proteins in the lumen of the endoplasmic reticulum.  相似文献   

2.
Peripheral endoplasmic reticulum membrane proteins residing in the lumen of the endoplasmic reticulum occupy the same space as other secreted proteins. The presence of a four amino acid salvage or retention signal (KDEL-COOH = Lys-Asp-Glu-Leu-COOH) at the carboxyl-terminal end of peripheral membrane proteins has been shown to represent a signal or an essential part of a signal for their retention within the endoplasmic reticulum membrane. In heart and skeletal muscle, a number of sarcoplasmic reticulum proteins have recently been identified which are peripheral membrane proteins. The high-affinity calcium-binding protein (55 kilodaltons (kDa] appears to conform to the above described mechanisms and contains the KDEL carboxyl-terminal tetrapeptide. Thyroid hormone binding protein is present in the sarcoplasmic reticulum, in addition to its endoplasmic reticulum location, and has a modified but related tetrapeptide sequence (RDEL = Arg-Asp-Glu-Leu), which also probably functions as the retention signal. Calsequestrin and a 53-kDa glycoprotein, two other peripheral membrane proteins residing in the lumen of the sarcoplasmic reticulum, do not contain the KDEL retention signal. The sarcoplasmic reticulum may have developed a unique retention mechanism(s) for these muscle-specific proteins.  相似文献   

3.
Lee S  Park B  Ahn K 《Journal of virology》2003,77(3):2147-2156
US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum.  相似文献   

4.
We have cloned the gene for the resident luminal ER protein BiP from the fission yeast, Schizosaccharomyces pombe. The predicted protein product is equally divergent from the budding yeast and mammalian homologues. Disruption of the BiP gene in S. pombe is lethal and BiP mRNA levels are regulated by a variety of stresses including heat shock. Immunofluorescence of cells expressing an epitope-tagged BiP protein show it to be localized to the nuclear envelope, around the cell periphery and in a reticular structure through the cytoplasm. Unexpectedly, we find the BiP protein contains an N-linked glycosylation site which can be utilized. The C-terminal four amino acids of BiP are Ala-Asp-Glu-Leu, a new variant of the XDEL sequence found at the C-termini of luminal endoplasmic reticulum proteins. To determine whether this sequence acts as a sorting signal in S.pombe we expressed an acid phosphatase fusion protein extended at its C-terminus with the amino acids ADEL. Analysis of the sorting of this fusion protein indicates that the ADEL sequence is sufficient to cause the retention of proteins in the endoplasmic reticulum. The sequences DDEL, HDEL and KDEL can also direct ER-retention of acid phosphatase in S.pombe.  相似文献   

5.
A cDNA clone encoding 55-kDa multifunctional, thyroid hormone binding protein of rabbit skeletal muscle sarcoplasmic reticulum was isolated and sequenced. The cDNA encoded a protein of 509 amino acids, and a comparison of the deduced amino acid sequence with the NH2-terminal amino acid sequence of the purified protein indicates that an 18-residue NH2-terminal signal sequence was removed during synthesis. The deduced amino acid sequence of the rabbit muscle clone suggested that this protein is related to human liver thyroid hormone binding protein, rat liver protein disulfide isomerase, human hepatoma beta-subunit of prolyl 4-hydroxylase and hen oviduct glycosylation site binding protein. The protein contains two repeated sequences Trp-Cys-Gly-His-Cys-Lys proposed to be in the active sites of protein disulfide isomerase. Northern blot analysis showed that the mRNA encoding rabbit skeletal muscle form of the protein is present in liver, kidney, brain, fast- and slow-twitch skeletal muscle, and in the myocardium. In all tissues the cDNA reacts with mRNA of 2.7 kilobases in length. The 55-kDa multifunctional thyroid hormone binding protein was identified in isolated sarcoplasmic reticulum vesicles using a monoclonal antibody specific to the 55-kDa thyroid hormone binding protein from rat liver endoplasmic reticulum. The mature protein of Mr 56,681 contains 95 acidic and 61 basic amino acids. The COOH-terminal amino acid sequence of the protein is highly enriched in acidic residues with 17 of the last 29 amino acids being negatively charged. Analysis of hydropathy of the mature protein suggests that there are no potential transmembrane segments. The COOH-terminal sequence of the protein, Arg-Asp-Glu-Leu (RDEL), is similar to but different from that proposed to be an endoplasmic reticulum retention signal; Lys-Asp-Glu-Leu (KDEL) (Munro, S., and Pelham, H.R.B. (1987) Cell 48, 899-907). This variant of the retention signal may function in a similar manner to the KDEL sequence, to localize the protein to the sarcoplasmic or endoplasmic reticulum. The positively charged amino acids Lys and Arg may thus interchange in this retention signal.  相似文献   

6.
Soluble luminal proteins of the endoplasmic reticulum (ER) are known to be retained by a tetrapeptide retention signal, KDEL. We report in this communication that the KDEL sequence when appended to the carboxy terminus of a cell surface membrane protein, dipeptidyl peptidase IV (DPPIV), resulted in its retention in the endoplasmic reticulum of transfected Madin-Darby canine kidney cells as assessed by indirect immunofluorescence. Selective surface biotinylation revealed that about 90-95% of the expressed DPPIV was retained in the ER. Appendance of the sequence KDEV did not, however, result in ER retention, illustrating the functional specificity of the retention signal. The ER retention was not due to misfolding of the mutant protein, as the mutant proteins remained enzymatically active. Our data suggest that the KDEL receptor is able to recognize and recycle type II membrane proteins containing a carboxyl-terminal KDEL sequence and postulates the existence of such yet to be identified endogenous proteins.  相似文献   

7.
The cytochrome P450 2C1 N-terminal signal anchor sequence mediates direct retention of the protein in the endoplasmic reticulum and consists of a hydrophobic transmembrane domain, residues 3-20, followed by a hydrophilic linker, residues 21-28. Fusions of the N-terminal 21 or 28 amino acids of P450 2C1 to green fluorescent protein resulted in endoplasmic reticulum localization of the chimera in transfected cells. Disruption of microtubules by nocodazole treatment resulted in redistribution into a punctate pattern for the 1-21, but not for the 1-28, chimera indicating that the linker was preventing transport from the endoplasmic reticulum but was not required for retrieval to the endoplasmic reticulum from the pre-Golgi compartment. In the 1-28 chimera, mutations of residues 21-23 (KQS) in the linker resulted in redistribution of the chimera after nocodazole treatment. Mutations in the transmembrane domain affected both direct retention in the endoplasmic reticulum and retrieval from the pre-Golgi compartment, and although structural requirements for each process are distinct, in both cases the arrangement of amino acids and distribution of hydrophobicity are critical. In contrast, the linker region exhibits a sequence-specific requirement for direct retention in the endoplasmic reticulum.  相似文献   

8.
We have isolated a cDNA encoding an endoplasmic reticulum alpha-mannosidase, an asparagine-linked oligosaccharide processing enzyme, from a rat liver lambda gt11 library. Two degenerate oligonucleotides, based on amino acid sequence data from the purified enzyme, were used as primers in the polymerase chain reaction with liver cDNA as a template to generate an unambiguous cDNA probe. The cDNA fragment (524 base pair) obtained was then used to isolate cDNA clones by hybridization. We isolated two overlapping clones which were used to construct a full-length cDNA of 3392 base pairs. A single open reading frame of 1040 amino acids encodes a protein with a molecular mass of 116 kilodaltons containing the six known peptide sequences. The deduced amino acid sequence revealed no classical signal sequence or membrane-spanning domain. The alpha-mannosidase encoding cDNA can be expressed transiently in COS cells using the mammalian expression vector pXM, causing a 400-fold increase in alpha-mannosidase activity as well as a dramatic increase in immunoreactive polypeptide. The rat liver endoplasmic reticulum alpha-mannosidase bears striking homology to the vacuolar alpha-mannosidase from Saccharomyces cerevisiae.  相似文献   

9.
A new protein of feline infectious peritonitis coronavirus (FIPV) was discovered in lysates of [35S]cysteine-labeled infected cells. Expression of open reading frame (ORF) 6b of FIPV in recombinant vaccinia virus-infected cells was used to identify it as the 6b protein. Further characterization revealed that it is a novel type of viral glycoprotein whose function is not clear. It is a soluble protein contained in microsomes; its slow export from the cell is caused by the presence of an endoplasmic reticulum (ER) retention signal at the C terminus. This amino acid sequence, KTEL, closely resembles the consensus KDEL signal of soluble resident ER proteins. A mutant 6b protein with the C-terminal sequence KTEV became resistant to digestion by endo-beta-N-acetylglucosaminidase H with a half-time that was reduced threefold. In contrast, a mutant with the sequence KDEL was completely retained in the ER. The FIPV 6b protein is the first example of a viral protein with a functional KDEL-like ER retention signal.  相似文献   

10.
《The Journal of cell biology》1987,105(6):2923-2931
Translocation of proteins across membranes of the endoplasmic reticulum, mitochondrion, and chloroplast has been shown to be mediated by targeting signals present in the transported proteins. To test whether the transport of proteins into peroxisomes is also mediated by a peptide targeting signal, we have studied the firefly luciferase gene that encodes a protein transported to peroxisomes in both insect and mammalian cells. We have identified two regions of luciferase which are necessary for transport of this protein into peroxisomes. We demonstrate that one of these, region II, represents a peroxisomal targeting signal because it is both necessary and sufficient for directing cytosolic proteins to peroxisomes. The signal is no more than twelve amino acids long and is located at the extreme carboxy-terminus of luciferase. The location of the targeting signal for translocation across the peroxisomal membrane therefore differs from the predominantly amino-terminal location of signals responsible for transport across the membranes of the endoplasmic reticulum, chloroplast, or mitochondrion.  相似文献   

11.
The ryanodine receptor (RyR) is a large homotetrameric protein with a hydrophobic domain at the C-terminal end that resides in the endoplasmic reticulum (ER) or sarcoplasmic reticulum membrane and forms the conduction pore of a Ca(2+) release channel. Our previous studies showed that RyR expressed in heterologous cells localized to the ER membrane. Confocal microscopic imaging indicated that the ER retention signal is likely present within the C-terminal portion of RyR, a region that contains four putative transmembrane segments. To identify the amino acid sequence responsible for ER retention of RyR, we expressed fusion proteins containing intercellular adhesion molecule (ICAM), various fragments of RyR, and green fluorescent protein (GFP) in Chinese hamster ovary and COS-7 cells. ICAM is a plasma membrane-resident glycoprotein and serves as a reporter for protein trafficking to the cell surface membrane. Imaging analyses indicated that ICAM-GFP fusion proteins with RyR sequence preceding the four transmembrane segments, ICAM-RyR-(3661-3993)-GFP, and with RyR sequence corresponding to transmembrane segments 1, 2, and 3, ICAM-RyR-(4558-4671)-GFP and ICAM-RyR-(4830-4919)-GFP, were localized to the plasma membrane; fusion proteins containing the fourth transmembrane segment of RyR, ICAM-RyR-(4913-4943)-GFP, were retained in the ER. Biochemical assay showed that ICAM-RyR-GFP fusion proteins that target to the plasma membrane are fully glycosylated, and those retained in the intracellular membrane are core-glycosylated. Together our data indicate that amino acids 4918-4943 of RyR contain the signal sequence for ER retention of the Ca(2+) release channel.  相似文献   

12.
The major auxin-binding protein from maize coleoptiles was purified to homogeneity. The protein has an apparent mol. wt of 22 kd and binds 1-naphthylacetic acid with a KD of 2.40 x 10(-7) M. Additional antigenically related proteins, present in very low amounts, could be demonstrated in maize coleoptiles using immunodetection. Extensive protein sequence analysis of the major auxin-binding protein allowed the construction of several synthetic oligonucleotide probes which were used to isolate a cDNA coding for this protein. The cDNA corresponds to a mRNA with a 3'-poly(A)+ sequence and a single, long open reading frame of 603 bases. The open reading frame, starting 34 residues from the 5' end of the cDNA, predicts a 21,990 Dalton protein of 201 amino acids. Comparison of this deduced amino acid sequence with the partial amino acid sequences of purified auxin-binding protein, revealed a perfect match, involving a total of 53 amino acid residues. The primary amino acid sequence includes a 38-amino-acid-long N-terminal hydrophobic leader sequence which could represent a signal for translocation of this protein to the endoplasmic reticulum. An additional signal is located at the C-terminal end, consisting of the amino acids KDEL known to be responsible for preventing secretion of proteins from the lumen of the endoplasmic reticulum in eucaryotic cells. The primary sequence contains a N-glycosylation site (-asp133-thr-thr-). This site was found to be glycosylated by a high-mannose-type oligosaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
The v-vis gene encodes p28sis, the transforming protein of simian sarcoma virus. This gene resulted from a fusion of the env gene of simian sarcoma-associated virus and the woolly monkey gene for the B chain of platelet-derived growth factor (PDGF). Previous work has shown that the v-sis gene product undergoes signal sequence cleavage, glycosylation, dimerization, and proteolytic processing to yield a secreted form of the protein. It transport across the endoplasmic reticulum is blocked by the introduction of a charged amino acid residue within the signal sequence, the protein does not dimerize, is not secreted, and is no longer transforming as assayed by focus-forming ability in NIH 3T3 cells. Instead, this mutant protein localizes to the nucleus as demonstrated by both indirect immunofluorescence and cell fractionation. Using a series of deletion mutations, we delimited an amino acid sequence within this protein which is responsible for nuclear localization. This region is completely conserved in the predicted human c-sis protein, although it lies outside of regions required for transformation by the v-sis gene product. This nuclear transport signal is contained within amino acid residues 237 to 255, RVTIRTVRVRRPPKGKHRK. An amino acid sequence containing these residues is capable of directing cytoplasmic v-sis mutant proteins to the nucleus. This sequence is also capable of directing less efficient nuclear transport of a normally cytoplasmic protein, pyruvate kinase. Pulse-chase experiments indicate that the half-lives of nuclear and cytoplasmic v-sis mutant proteins are approximately 35 min. Using the heat-inducible hsp70 promoter from Drosophila melanogaster, we showed that the nuclear v-sis protein accumulates in the nucleus within 30 min of induction. The identification of a nuclear transport signal in the v-sis gene product raises interesting questions regarding the possibility of some function for PDGF or PDGF-related molecules in the nucleus.  相似文献   

15.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

16.
Tail-anchored proteins are a group of membrane proteins oriented with their amino terminus in the cytoplasm and their carboxy terminus embedded in intracellular membranes. This group includes the apoptosis-mediating proteins of the Bcl-2 family as well as the vesicle targeting proteins of the SNARE group, among others. A stretch of hydrophobic amino acids at the extreme carboxy terminus of these proteins serves both as a membrane anchor and as a targeting signal. Tail-anchored proteins are differentially targeted to either the endoplasmic reticulum or the mitochondrial outer membrane and the mechanism which accomplishes this selective targeting is poorly understood. Here we define important characteristics of the signal/anchor region which directs proteins to the mitochondrial outer membrane. We have created an artificial sequence consisting of a stretch of 16 leucines bounded by positively charged amino acids. Using this template we demonstrate that moderate hydrophobicity distinguishes the mitochondrial tail-anchor sequence from that of the endoplasmic reticulum tail-anchor sequence. A change as small as introduction of a single polar residue into a sequence that otherwise targets to the endoplasmic reticulum can substantially switch targeting to the mitochondrial outer membrane. Further we show that a mitochondrially targeted tail-anchor has a higher propensity for the formation of alpha-helical structure than a sequence directing tail-anchored proteins to the endoplasmic reticulum.  相似文献   

17.
We have isolated an expressible full-length cDNA clone encoding murine ERp99, an abundant, conserved transmembrane glycoprotein of the endoplasmic reticulum membrane. ERp99 is synthesized as a 92,475-kDa precursor containing 802 amino acids. It possesses a signal peptide of 21 amino acids which is cleaved cotranslationally. Analysis of the amino acid sequence deduced from the nucleotide sequence of the cDNA clone led us to propose a model for the orientation of ERp99 in the endoplasmic reticulum membrane. In this model, ERp99 possesses one membrane-spanning, stop transfer segment in the N-terminal region. The protein chain passes through the membrane only once, and approximately 75% of the protein remains on the cytoplasmic side of the ER membrane. Comparison of the ERp99 sequence to the sequence of other proteins revealed that ERp99 has extensive homology with the 90-kDa heat shock protein of Saccharomyces cerevisiae (hsp90) and the 83-kDa heat shock protein of Drosophila melanogaster. In addition, the N terminus of mature ERp99 is identical to that of the 94-kDa glucose regulated protein (GRP94) of mammalian cells.  相似文献   

18.
T Nilsson  M Jackson  P A Peterson 《Cell》1989,58(4):707-718
The adenoviral transmembrane E3/19K glycoprotein is a resident of the endoplasmic reticulum. Here we show that the last six amino acid residues of the 15-membered cytoplasmic tail are necessary and sufficient for the ER retention. These residues can be transplanted onto the cytoplasmic tail of other membrane-bound proteins such that ER residency is conferred. Deletion analysis demonstrated that no single amino acid residue is responsible for the retention. The identified structural motif must occupy the extreme COOH-terminal position to be functional. An endogenous transmembrane ER protein, UDP-glucuronosyltransferase, also contains a retention signal in its cytoplasmic tail. We suggest that short linear sequences occupying the extreme COOH-terminal position of transmembrane ER proteins serve as retention signals.  相似文献   

19.
The COOH-terminal sequence KDEL has been shown to be essential for the retention of several proteins in the lumen of the endoplasmic reticulum (Munro S., and Pelham, H. R. B. (1987) Cell 48, 899-907; Pelham, H. R. B. (1988) EMBO J. 7, 913-918; Mazzarella; R. A., Srinivasan, M., Haugejorden, S. M., and Green, M. (1990) J. Biol. Chem. 265, 1092-1101). We have previously demonstrated that variants to the KDEL retention signal, particularly at the initial two positions of the tetrapeptide, can be made without affecting its ability to direct intracellular retention when appended to the neuropeptide Y precursor (pro-NPY) (Andres, D. A., Dickerson, I. M., and Dixon, J. E. (1990) J. Biol. Chem. 265, 5952-5955). To further investigate the nature of the KDEL retention signal, oligonucleotide-directed mutagenesis and transfection was used to generate stable mouse anterior pituitary AtT-20 cell lines expressing pro-NPY mutants with variants of the KDEL sequence added to their direct carboxyl terminus. Analyses of dibasic processing and indirect immunofluorescent microscopy of AtT-20 subclones were consistent with the retention of the pro-NPY mutants bearing the COOH-terminal extensions QDEL, KEDL, or KDEI within the endoplasmic reticulum. A change in the final amino acid of the tetrapeptide from Leu to Val abolished retention completely, and the peptide hormone was processed and secreted. These results indicate that only a limited number of conservative changes can be made to the final two positions of the tetrapeptide without abolishing activity and suggest a highly specific interaction of the retention signal and the KDEL receptor.  相似文献   

20.
In trypanosomatids, endocytosis and exocytosis are restricted to the flagellar pocket (FP). The cysteine-rich acidic repetitive transmembrane (CRAM) protein is located at the FP of Trypanosoma brucei and potentially functions as a receptor or an essential component for lipoprotein uptake. We characterized sorting determinants involved in efficient trafficking of CRAM to and from the FP of T. brucei. Previous studies indicated the presence of signals in the CRAM C terminus, specific for its localization to the FP and for efficient endocytosis (H. Yang, D. G. Russell, B. Zeng, M. Eiki, and M.G.-S. Lee, Mol. Cell. Biol. 20:5149-5163, 2000.) To delineate functional domains of putative sorting signals, we performed a mutagenesis series of the CRAM C terminus. Subcellular localization of CRAM mutants demonstrated that the amino acid sequence between -5 and -14 (referred to as a transport signal) is essential for exporting CRAM from the endoplasmic reticulum to the FP, and mutations of amino acids at -12 (V), -10 (V), or -5 (D) led to retention of CRAM in the endoplasmic reticulum. Comparison of the endocytosis efficiency of CRAM mutants demonstrated that the sequence from amino acid -5 to -23 (referred to as a putative endocytosis signal) is required for efficient endocytosis and overlaps with the transport signal. Apparently the CRAM-derived sorting signal can efficiently interact with the T. brucei micro1 adaptin, and mutations at amino acids essential for the function of the transport signal abolished the interaction of the signal with T. brucei micro1, strengthening the hypothesis of the involvement of the clathrin- and adaptor-dependent pathway in trafficking of CRAM via the FP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号