共查询到20条相似文献,搜索用时 0 毫秒
1.
J. M. Ramirez K. G. Pearson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(4):485-494
1. Phentolamine was injected into the haemolymph of locusts, Locusta migratoria, and its effects on the flight system were analyzed using electrophysiological techniques. 2.Doses of 150 microliters at 10(-2) M phentolamine inactivated the wing stretch-receptors and tegulae without influencing the central nervous system (CNS). The lack of effect on the CNS was demonstrated by the absence of any effect on the flight motor pattern in animals that had been mechanically deafferented prior to the administration of phentolamine. From these observations we conclude that phentolamine can be used to chemically deafferent the flight system of the locust. Consistent with this conclusion is that the administration of phentolamine in intact animals changed the flight motor pattern so that it resembled the pattern occurring in mechanically deafferented animals. 3. The two main advantages of deafferenting the flight system by injecting phentolamine were a) intracellular recordings from central neurons could be easily maintained during the process of deafferentation, and b) the contribution of different groups of proprioceptors to the generation of the motor pattern could be assessed since not all proprioceptors were inactivated simultaneously. 4. By intracellularly recording from elevator motoneurons and administering phentolamine we confirmed a number of previous results related to the function of the wing stretch-receptors and the tegulae. 相似文献
2.
M. Burrows H. J. Pflüger 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1992,171(4):437-446
Summary The output connections of a bilaterally symmetrical pair of wind-sensitive interneurones (called A4I1) were determined in a non-flying locust (Schistocerca gregaria). Direct inputs from sensory neurones of specific prosternai and head hairs initiate spikes in these interneurones in the prothoracic ganglion.The interneurone with its axon in the right connective makes direct, excitatory connections with the two mesothoracic motor neurones innervating the pleuroaxillary (pleuroalar, M85) muscle of the right forewing, but not with the comparable motor neurones of the left forewing. The connections can evoke motor spikes.The interneurones also exert a powerful, but indirect effect on the homologous metathoracic pleuroaxillary motor neurones (muscle 114), and a weaker, indirect effect on subalar motor neurones of the hindwings. No connections or effects were found with other flight motor neurones, or motor neurones innervating hindleg muscles, including common inhibitor 1 which also innervates the pleuroaxillary muscle.One thoracic interneurone with its cell body in the right half of the mesothoracic ganglion and with its axon projecting ipsilaterally to the metathoracic ganglion receives a direct input from the right A4I1 interneurone.These restricted output connections suggest a role for the A4I1 interneurones in flight steering.Abbreviations
DCMD
descending contralateral movement detector
-
EPSP
excitatory postsynaptic potential
-
TCG
tritocerebral commissure giant (interneurone) 相似文献
3.
4.
5.
R. C. Miall 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,166(5):735-744
The contribution of head movement to the control of roll responses in flying locusts (Locusta migratoria) has been examined (i) on a flight balance, recording the angles through which the locust turns when following an artificial horizon; (ii) by recording activity in a pair of flight muscles in restrained conditions; and (iii) by observations on free flying locusts. Responses were compared when the head was free to turn about the thorax, as normal, and when the head was waxed to the thorax, blocking any relative motion between the two (head-fixed). These experiments suggest that the major signal generating corrective roll manoeuvres is the visual error between the angle of the head and the horizon, rather than a signal that includes a measure of the head-thorax angle.
These data suggest that the reduction in visual inputs caused by compensatory motion of the head during roll manoeuvres is not functionally replaced by inputs from cervical proprioceptors. Some reasons why the locust may nevertheless allow head movement relative to the thorax during flight are discussed. 相似文献
1. | On the flight balance in the head-free condition the roll angle of the thorax was consistently less than in the head-fixed state, and followed the stimulus with longer response lags. Furthermore, the difference between the angle of the thorax assumed during head-free and head-fixed rolls was close to the angle of the head relative to the thorax during head-free responses. |
2. | Records of activity of the forewing first basalar muscles (M97) were made during rotation of the horizon about immobilized animals. When the head could follow the horizon, the relative latency between activity in the left and right basalar muscles decreased as the head position turned to approach the displaced horizon. When head-fixed, the relative latency was directly proportional to horizon angle. |
3. | The relative latency between left and right M97 flight muscles correlates better with the visual error signal than with the horizon position signal, lagging by approximately 40 ms. |
4. | In the open air, head-fixed locusts appear able to fly as well as head-free locusts. |
6.
In this paper we describe the characteristics, connections, resetting properties and organization of some identified interneurones in the flight system of the locust. The major conclusions are that: (1) the flight rhythm is generated at the interneuronal level and the flight oscillator is not continuously active (2) the interneurones in the flight pattern generator are distributed within at least 6 segmental ganglia (three thoracic and three fused abdominal ganglia) and are not organized into two homologous groups for the separate control of the forewing and the hindwing (3) this distribution of flight interneurones has no obvious functional significance but could be a consequence of flight having evolved from a segmentally distributed motor behaviour (4) there may be a functional hierarchy among flight interneurones such that premotor interneurones are separate from those generating the rhythm. 相似文献
7.
Klaus Hensler Daniel Robert 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,166(5):685-693
1. | Locusts (Locusta migratoria) flying under open-loop conditions respond to simulated course deviations (movements of an artificial horizon around the roll axis) with compensatory head movements and with steering reactions of wing muscles (Figs. 3, 4). Steering was quantified as shifts of the relative latency between spikes in the left and right M97 (first basalar muscle). For practical reasons these shifts are a more useful measure than corrective torque itself, to which they are linearly proportional over much of the range (Fig. 2). |
2. | Steering in M97 is elicited visually (horizon movement) and by proprioceptive input reporting head movements (neck reflexes). Compensatory head movements reduce the strength of steering because the reduction in visual information signalling deviations is only partially balanced by proprioceptive input from the neck (Fig. 4C). |
3. | Under closed-loop conditions, flying locusts stabilize the position of an artificial horizon against a constant bias (Figs. 5–7), the horizon oscillating slightly along the normal orientation. Head movements do not follow the horizon movements as closely as under open-loop conditions, but on average head movements are compensatory, i.e. the mean mismatch between head and horizon is less than the mean mismatch between body and horizon. |
4. | The horizon position is stabilized when the head is free to move, but also when the head is immobilized. In the latter case the oscillations along the straight flight path are more pronounced (Fig. 7), indicating that the reduction of steering by compensatory head movements (as seen under open-loop conditions, Fig. 4C) reduces overshoot. |
5. | The control and the significance of (compensatory) head movements for course control are discussed. |
8.
H. Xu R. M. Robertson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(2):193-202
High ambient temperatures increase the wing-beat frequency in flying locusts, Locusta migratoria. We investigated parameters of circuit and cellular properties of flight motoneurons at temperatures permissive for flight (20–40 °C). As the thoracic temperature increased motoneuronal conduction velocity increased from an average of 4.40 m/s at 25 °C to 6.73 m/s at 35 °C, and the membrane time constant decreased from 11.45 ms to 7.52 ms. These property changes may increase locust wing-beat frequency by affecting the temporal summation of inputs to flight neurons in the central circuitry. Increases in thoracic temperature from 25–35 °C also resulted in a hyperpolarization of the resting membrane potentials of flight motoneurons from an average of-41.1 mV to -47.5 mV, and a decrease of input resistances from an average of 3.45 M to 2.00 M. Temperature affected the measured input resistance both by affecting membrane properties, and by altering synaptic input. We suggest that the increase in conduction velocity Q10=1.53) and the decrease of membrane time constant (Q10=0.62) would more than account for the wing-beat frequency increase (Q10=1.15). Hyperpolarization of the resting membrane potential (Q10=1.18) and reduction in input resistance (Q10=0.54) may be involved in automatic compensation of temperature effects.Abbreviations ANOVA
analysis of variance
- CPG
central pattern generator
- DL
dorsal longitudinal muscles
- EMG
electromyographic
- MN
motoneuron
- PSP
post synaptic potential
- Q10
temperature coefficient
- RMP
resting membrane potential
- S.D.
standard deviation
- SR
stretch receptor 相似文献
9.
D. Parker 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(6):737-748
The pharmacology of the direct central connections between the fast extensor and flexor motor neurones of a locust (Schistocerca gregaria) hind leg was studied. A spike in the fast extensor produces an EPSP in the flexor motor neurones. Glutamate depolarized the flexor motor neurones when injected into the neuropil. Quisqualate, but not by kainate or NMDA, also depolarized the flexor motor neurones. The fast extensor was also depolarized by glutamate, and also by kainate, but not by quisqualate, AMPA or NMDA. The glutamate response in the flexor motor neurones and the EPSP evoked by a spike in FETi both had similar reversal potentials. The FETi-evoked EPSP was blocked by bath application of the glutamate antagonist glutamic acid diethyl ester. The responses of extrasynaptic somata receptors to glutamate were compared to the neuropil responses. Glutamate usually hyperpolarized the somata of FETi and the flexor motor neurones. The response of a flexor motor neurone to glutamate was abolished at potentials less negative than -90 mV. The results provide evidence for glutamate transmission at central synapses in the locust, and show that presumed synaptic receptors in the neuropil differ to the extrasynaptic soma response 相似文献
10.
R. Meldrum Robertson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(1):61-69
1. | Coordinated movements of the wings during flight in the locust result from coordinated activity of flight neurons in the thoracic ganglia. Many flight interneurons and motoneurons fire synchronous bursts of action potentials during the expression of the flight motor pattern. The mechanisms which underlie this synchronous firing were investigated in a deafferented preparation of Locusta migratoria. |
2. | Simultaneous intracellular recordings were taken from flight neurons in the mesothoracic ganglion using glass microelectrodes filled with fluorescent dye. |
3. | Three levels of synchronous activity between synergistic motoneurons and between the right and left partners of bilaterally symmetrical pairs of interneurons were observed: bursting which was loosely in phase but which showed little correlation between the temporal parameters of individual bursts in the two neurons; bursting which showed synchrony of the beginning and end of bursts; and bursts which showed highly synchronous spike-for-spike activity. |
4. | Direct interactions between the neurons had little or no part to play in maintaining any of the levels of synchrony, even in instances of very close synchrony (spikes in different neurons occurring within 1 ms of each other). Highly synchronous firing was a consequence of common synaptic input impinging on neurons with similar morphological and physiological properties. |
11.
G. Wendler M. Müller U. Dombrowski 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(1):65-75
In the moth Manduca sexta, the paired mesothoracic flight steering muscle II PD2m takes part in the generation of the flight rhythm and is spontaneously active in the non-flying animal. This spontaneous activity is modulated by optomotor stimuli and directionally selective. The directional response characteristics are analyzed. Another spontaneously active steering muscle pair, the III PD2c, is situated in the metathorax. The activities of this pair and of a third muscle pair, the III PD3 are also influenced by visual stimulation.The responses of all 6 muscles to optomotor stimuli which simulate the flight situations yaw, roll, thrust and lift are analyzed. Each situation elicits a unique pattern of activation/deactivation within this set of muscles. The activity pattern in non-flying animals allows the prediction of flight steering mechanisms such as changes of wing area in flight turns and provides a useful basis for the analysis of visuo-motor pathways. 相似文献
12.
P. A. Stevenson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,180(1):91-98
This report investigates the reflex activation of locust flight motoneurones following their spiking activity. As shown elsewhere,
an electrical stimulus applied to a flight muscle produces multiple waves of delayed excitation in wing elevator and depressor
motoneurones. Nerve ablation experiments show that this response is initiated by the mechanical movement of the stimulated
muscle, and not the antidromic spike evoked in the motoneurone. The delayed excitation still occurs in the absence of inputs
from the wing receptor systems, and also when all other sources of afferent feedback are abolished, excepting thoracic nerve
2. Following complete deafferentation, spikes in flight motoneurones had no influence on other flight motoneurones. Numerous
afferents in the purely sensory nerve 2 are excited by flight muscle contractions. The responses are consistent for repeated
contractions of the same muscle, but differ when other muscles are stimulated. During tethered flight, changes in the activation
of single flight muscles are reflected in changes of the nerve 2 discharge pattern. Electrical stimulation of this nerve causes
delayed excitation of flight motoneurones, and can initiate flight activity. It is suggested that internal proprioceptors,
such as those associated with nerve 2, will contribute to shaping the final motor output for flight behaviour.
Accepted: 24 April 1996 相似文献
13.
C. E. Gee R. M. Robertson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(4):437-447
We have measured parameters of identified excitatory postsynaptic potentials from flight interneurons in immature and mature adult locusts (Locusta migratoria) to determine whether parameters change during imaginal maturation. The presynaptic cell was the forewing stretch receptor. The postsynaptic cells were flight interneurons that were filled with Lucifer Yellow and identified by their morphology. Excitatory postsynaptic potentials from different postsynaptic cells had characteristic amplitudes. The amplitude, time to peak, duration at half amplitude and the area above the baseline of excitatory postsynaptic potentials did not change with maturation. The latency from action potentials in the forewing stretch receptor to onset of excitatory postsynaptic potentials decreased significantly with maturation. We suggest this was due to an increase in conduction velocity of the forewing stretch receptor. We also measured morphological parameters of the postsynaptic cells and found that they increased in size with maturation. Growth of the postsynaptic cell should cause excitatory postsynaptic potential amplitude to decrease as a result of a decrease in input resistance, however, this was not the case. Excitatory postsynaptic potentials in immature locusts depress more than in mature locusts at high frequencies of presynaptic action potentials. This difference in frequency sensitivity of the immature excitatory postsynaptic potentials may account in part for maturation of the locust flight rhythm generator.Abbreviations EPSP
excitatory postsynaptic potential
- fSR
forewing stretch receptor
- IPSP
inhibitory postsynaptic potential
- SR
stretch receptor 相似文献
14.
U. Homberg 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(5):597-610
The study investigates activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria during wind-elicited tethered flight. Neurons with ascending projections from the ventral nerve cord to the lateral accessory lobes showed flight-associated excitations which were modulated in the flight motor rhythm. Descending neurons with ramifications in the lateral accessory lobes were tonically excited corresponding to flight duration. The onset of wind-elicited responses in the descending neurons preceded the onset of flight motor activity by 22–60 milliseconds. Neurons connecting the lateral accessory lobes with the central body, the anterior optic tubercles, or other brain areas showed a variety of responses including activity changes during flight initiation and flight termination. Activity in many of these neurons was less tightly coupled to the flight situation and often returned to background levels before flight was terminated. Most of the recorded neurons responded, in addition, to stationary visual stimuli. The results suggest that the lateral accessory lobes in the locust brain are integrative links between the central body, visual pathways, and the ventral nerve cord. The possible involvement of these brain areas in flight control is discussed. 相似文献
15.
J. Erber B. Pribbenow K. Grandy S. Kierzek 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1997,181(4):355-365
Honeybees fixed in small tubes scan an object within the range of the antennae by touching it briefly and frequently. In
our experiments the animals were able to scan an object for several minutes with the antennae. After moving the object out
of the range of the antennae, the animals showed antennal movements for several minutes that were correlated with the position
of the removed object. These changes of antennal movements are called “behavioural plasticity” and are interpreted as a form
of motor learning. Bees showed behavioural plasticity only for objects with relatively large surfaces. Plasticity was more
pronounced in bees whose compound eyes were occluded. Behavioural plasticity was related to the duration of object presentation.
Repeated presentations of the object increased the degree of plasticity. After presentation durations of 30 min the animals
showed a significant increase of antennal positions related to the surface of the object and avoidance of areas corresponding
to the edges. Behavioural plasticity was compared with reward-dependent learning by conditioning bees to objects. The results
of motor learning and reward-dependent conditioning suggest that bees have tactile spatial memory.
Accepted: 13 May 1997 相似文献
16.
Mark A. Davis 《Journal of insect physiology》1980,26(6):403-406
Milkweed beetles, Tetraopes tetraophalmus (Forster) (Cerambycidae), were flight tested three times weekly throughout their lives. Flight durations peaked early in life and then declined rapidly with age. Significant variation existed (1) between individuals, with some flying for long periods of time, others for only a few seconds, and (2) within individuals, with some flying for long periods on some test days and very briefly or not at all on other days. Long and short fliers were indistinguishable on the basis of size, sex, or lifespan. The data show that studies of insect flight will underestimate the number of long fliers in a population by as much as 50% or more unless individuals are flight tested more than once. 相似文献
17.
Summary Physiologically characterised motor neurones in the thoracic ganglia of the locust were injected with horseradish peroxidase in order that the spatial relationship between their input and output synapses could be observed with the electron microscope. A modification in the development procedure for the peroxidase ensured that the internal fine structure of the stained neurones was not obscured by the diaminobenzidine reaction product. Input and output synapses may occur within 1 m of each other on the neuropilar processes of the motor neurones. This supports physiological evidence that motor neurones may be involved in local circuit interactions within the thoracic ganglia. 相似文献
18.
《Somatosensory & motor research》2013,30(3):103-110
Ten individuals were divided into two feedback and no-feedback groups. The effect of abstract visual feedback was investigated in these two groups. Using eight electroencephalography (EEG) electrodes, the induced event-related desynchronization/synchronization of the EEG of three motor imagery tasks (left hand, right hand, and right foot) was analyzed by wavelet and spatial filtering methods. Linear discriminant analysis was used to classify the three imagery tasks. Each imagery task's total length was set to 3?s and 1?s of it was used for the classification. The classification result was shown to the subjects of the feedback group in a real-time manner as an abstract visual feedback. While the paired t-test of the first and third sessions of the training days confirmed the improvement of the motor imagery learning in the feedback group (p?<?0.01), the motor imagery learning of the no-feedback group was not significant. 相似文献
19.
Abstract The optomotor yaw response of the desert locust, Schistocerca gregaria (Forsk.), was investigated under open- and closed-loop conditions. When flying tethered in the centre of a vertically striped hollow sphere, the polarity of response of the locust was always the same as the stimulus. The response, therefore, appears suitable to stabilize body posture against passive rotations around the yaw-axis in free flight. Responses were induced by contrast frequencies up to 150 Hz with a maximum of amplitude at about 20 Hz. The characteristic curve, measured between 0.3 and 160 Hz, is widened up towards higher frequencies as compared with those of bees and flies.
Variability was the most striking feature in the locust's yaw response. The amplitude of modulation not only varied greatly between individuals but also changed with the same visual stimulus in the course of an experiment. We therefore suppose that the locust's turning behaviour is subject to gain control mechanisms and that spontaneous gain modulations are responsible for the observed variability in the stimulus-response conversion. 相似文献
Variability was the most striking feature in the locust's yaw response. The amplitude of modulation not only varied greatly between individuals but also changed with the same visual stimulus in the course of an experiment. We therefore suppose that the locust's turning behaviour is subject to gain control mechanisms and that spontaneous gain modulations are responsible for the observed variability in the stimulus-response conversion. 相似文献
20.
Mechanics and aerodynamics of insect flight control 总被引:8,自引:0,他引:8
GRAHAM K. TAYLOR 《Biological reviews of the Cambridge Philosophical Society》2001,76(4):449-471
Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments about all three axes (as used by most conventional aircraft) has only been proven for larger flies and dragonflies, but is likely to be widespread in insects given the number of independent control inputs available to them. Unlike in conventional aircraft, however, insects' control inputs are likely to be highly non-orthogonal, and this will tend to complicate the neural processing required to separate the various motions. 相似文献