首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations Arg117-->His and Asn21-->Ile of the human cationic trypsinogen have been recently identified in patients affected by hereditary pancreatitis (HP). The Arg117-->His substitution is believed to cause pancreatitis by eliminating an essential autolytic cleavage site in trypsin, thereby rendering the protease resistant to inactivation through autolysis. Here we demonstrate that the Arg117-->His mutation also significantly inhibits autocatalytic trypsinogen breakdown under Ca(2+)-free conditions and stabilizes the zymogen form of rat trypsin. Taken together with recent findings demonstrating that the Asn21-->Ile mutation stabilizes rat trypsinogen against autoactivation and consequent autocatalytic degradation, the observations suggest a unifying molecular pathomechanism for HP in which zymogen stabilization plays a central role.  相似文献   

2.
Bian Y  Liang X  Fang N  Tang XF  Tang B  Shen P  Peng Z 《FEBS letters》2006,580(25):6007-6014
Thermophilic WF146 protease possesses four surface loop insertions and a disulfide bond, resembling its psychrophilic (subtilisins S41 and S39) and mesophilic (subtilisins SSII and sphericase) homologs. Deletion of the insertion 3 (positions 193-197) or insertion 4 (positions 210-221) of WF146 protease resulted in a significant decrease of the enzyme stability. In addition, substitution of the residues Pro211 and Ala212 or residue Glu221 which localized in the vicinity of a Ca(2+) binding site of the enzyme by the corresponding residues in subtilisin S41 remarkably reduced the half-life of the enzyme at 70 degrees C, suggesting that the three residues contributed to the thermostability of the enzyme, probably by enhancing the affinity of enzyme to Ca(2+). In the presence of dithiothreitol, the WF146 protease suffered excessive autolysis, indicating that the Cys52-Cys65 disulfide bond played a critical role in stabilizing the WF146 protease against autolysis. The autolytic cleavage sites of the WF146 protease were identified to locate between residues Asn63-Gly64 and Cys65-Ala66 by N-terminal amino acid analysis of the autolytic product. It was noticed that the effect of the autolytic cleavage at Asn63-Gly64 could be compensated by the disulfide bond Cys52-Cys65 under non-reducing condition, and the disulfide bond cross-linked autolytic product remained active. The apparent stabilization effect of the disulfide bond Cys52-Cys65 in the WF146 protease might provide a rational basis for improving the stability of subtilase against autolysis by protein engineering.  相似文献   

3.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

4.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

5.
Mutations Arg(117) --> His and Asn(21) --> Ile in human trypsinogen-I have been recently associated with hereditary pancreatitis (HP). The Arg(117) --> His substitution is believed to cause pancreatitis by stabilizing trypsin against autolytic degradation, while the mechanism of action of Asn(21) --> Ile has been unknown. In an effort to understand the effect(s) of this mutation, Thr(21) in the highly homologous rat trypsinogen-II was replaced with Asn or Ile, and the recombinant zymogens and their active trypsin forms were studied. Kinetic parameters of all three trypsins were comparable, and the active enzymes suffered autolysis at similar rates, indicating that neither catalytic properties nor proteolytic stability of trypsin are influenced by mutations at position 21. When incubated at pH 8.0, 37 degrees C, pure zymogens underwent autoactivation with concomitant trypsinolytic degradation in a Ca(2+)-dependent fashion. Thus, in the presence of 5 mM Ca(2+), autoactivation and digestion of the zymogens after Arg(117) and Lys(188) were observed, while in the presence of 1 mM EDTA autoactivation and cleavage at Lys(188) were reduced, and zymogenolysis at the Arg(117) site was enhanced. Overall rates of zymogen degradation in [Asn(21)]- and [Ile(21)]trypsinogens were higher in Ca(2+) than in EDTA, while [Thr(21)]trypsinogen demonstrated inverse characteristics. Remarkably, both in the presence and absence of Ca(2+), [Ile(21)]trypsinogen exhibited significantly higher stability against autoactivation and proteolysis than zymogens with Asn(21) or Thr(21). The observations suggest that autocatalytic trypsinogen degradation may be an important defense mechanism against excessive trypsin generation in the pancreas, and trypsinogen stabilization by the Asn(21) --> Ile mutation plays a role in the pathogenesis of HP.  相似文献   

6.
Cold-adapted deseasin MCP-01 is a novel type subtilase with a multidomain structure containing a catalytic domain, a linker, a P_proprotein domain, and a PKD domain. Its autolysis was pH-dependent due to its flexible structure. N-terminal sequence analysis of the autolytic peptides revealed four autolytic sites in the catalytic domain. Three of these are in the same loops as mesophilic subtilases and one is unlike anything previously reported. Two autolytic sites were deduced in its linker and three in its P_proprotein domain, indicating the linker and the P_proprotein domain are flexible and susceptible to proteolytic attacks. Therefore, during MCP-01 autolysis, the linker and the P_proprotein domain of MCP-01 were easily attacked by proteolysis, resulting in cleavage of the C-terminal region. At the same time, some autolytic sites in the surface loops of the catalytic domain were cleaved. This is the first report describing the autolytic mechanism of a multidomain subtilase.  相似文献   

7.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

8.
Green turtle lysozyme purified from egg white was sequenced and analyzed its activity. Lysozyme was reduced and pyridylethylated or carboxymethylated to digest with trypsin, chymotrypsin and V8 protease. The peptides yielded were purified by RP-HPLC and sequenced. Every trypsin peptide was overlapped by chymotrypsin peptides and V8 protease peptides. This lysozyme is composed of 130 amino acids including an insertion of a Gly residue between 47 and 48 residues when compared with chicken lysozyme. The amino acid substitutions were found at subsites E and F. Namely Phe34, Arg45, Thr47, and Arg114 were replaced by Tyr, Tyr, Pro, and Asn, respectively. The time course using N-acetylglucosamine pentamer as a substrate showed a reduction of the rate constant of glycosidic cleavage and transglycosylation and increase of binding free energy for subsite E, which proved the contribution of amino acids mentioned above for substrate binding at subsites E and F.  相似文献   

9.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

10.
A soluble, C-terminal truncated form of human membrane type 1 matrix metalloproteinase (MT1-MMP) containing the hemopexin-like domain was expressed in Pichia pastoris strain KM71. High levels of secreted protein were detected. Although the c-DNA for the proenzyme (Ala(21)-Glu(523) called DeltaTM-MT1-MMP) was cloned, almost only active MT1-MMP (Tyr(112)-Glu(523)) with identical N-terminus as described for the wild-type enzyme was isolated. This active enzyme was highly purified and characterized with respect to its biochemical properties. The recombinant protein showed high stability against autolysis and proteolysis by yeast proteases, although the calculated in vivo half-life is rather low. The biochemical properties of this new MT1-MMP species were compared with the well-characterized catalytic domain (Ile(114)-Ile(318)) of MT1-MMP. The novel form of MT1-MMP exhibited a higher stability against autolysis than the isolated catalytic domain (Ile(114)-Ile(318)).  相似文献   

11.
WF146 protease, a thermophilic subtilase from thermophile Bacillus sp. WF146, suffers excessive autolysis in the presence of reducing agents. In this report, two autolytic sites of WF146 protease were modified by site-directed mutagenesis. The introduction of prolines into the autolytic sites increased the autolysis resistance of the enzyme under reducing conditions. The double mutant N63P/A66P displayed a 2.8-fold longer half-life at 80°C and higher hydrolytic activities than wild-type enzyme toward soluble (casein) and insoluble (keratin azure) substrates at high temperatures. In the presence of reducing agents, N63P/A66P was able to degrade feather at 80°C (∼3 h), with hydrolysis efficiency comparable to that of proteinase K at 50°C (∼24 h). Meanwhile, the mutant N63P/A66P had the ability to hydrolyze PrPSc-like prion protein at high temperatures. In virtue of these properties, N63P/A66P is of great interest to be used in recycling of keratinous wastes, such as feather, and disinfection of medical apparatus. In addition, our study may provide useful information needed to explore keratinolytic potential of thermophilic subtilases, even if they are produced by non-keratinolytic microorganisms.  相似文献   

12.
Ferric myoglobin undergoes a two-electron oxidation in its reaction with H(2)O(2). One oxidation equivalent is used to oxidize Fe(III) to the Fe(IV) ferryl species, while the second is associated with a protein radical but is rapidly dissipated. The ferryl species is then slowly reduced back to the ferric state by unknown mechanisms. To clarify this process, the formation and stability of the ferryl forms of the Tyr --> Phe and Trp --> Phe mutants of recombinant sperm whale myoglobin (SwMb) were investigated. Kinetic studies showed that all the mutants react normally with H(2)O(2) to give the ferryl species. However, the rapid phase of ferryl autoreduction typical of wild-type SwMb was absent in the triple Tyr --> Phe mutant and considerably reduced in the Y103F and Y151F mutants, strongly implicating these two residues as intramolecular electron donors. Replacement of Tyr146, Trp7, or Trp14 did not significantly alter the autoreduction, indicating that these residues do not contribute to ferryl reduction despite the fact that Tyr146 is closer to the iron than Tyr151 or Tyr103. Furthermore, analysis of the fast phase of autoreduction in the dimer versus recovered monomer of the Tyr --> Phe mutant K102Q/Y103F/Y146F indicates that the Tyr151-Tyr151 cross-link is a particularly effective electron donor. The presence of an additional, slow phase of reduction in the triple Tyr --> Phe mutant indicates that alternative but normally minor electron-transfer pathways exist in SwMb. These results demonstrate that internal electron transfer is governed as much by the tyrosine pK(a) and oxidation potential as by its distance from the electron accepting iron atom.  相似文献   

13.
Polypeptides that contain the sequence Asn-Pro undergo complete cleavage at this amide bond with ammonia. One cleavage product possesses Pro as the new amino terminus and the other Asn or isoAsn as the new C-terminus, the formation of the latter probably arising by way of a cyclic succinimide intermediate. Other Asn-X bonds where X = Tyr, Gln, Ile, Glu, Ala, Gly, Asn or Phe did not exhibit any peptide bond cleavage, whereas when X = Leu, Thr and Ser partial cleavage was observed. Asn residues not involved in chain-cleavage underwent deamidation to Asp as shown by MALDI-ToF mass spectrometry (MS) analysis. The partial conversion of in-chain Asp residues to isoAsp under the reaction conditions was inferred from RP-HPLC and MS analysis of reaction mixtures.  相似文献   

14.
In a previous study, we prepared a monoclonal antibody (MoAb) to coagulation factor IX (FIX), designated 65-10, which interfered with the activation of FIX by the activated factor XI/Ca(2+) and neutralized the prolonged ox brain prothrombin time of hemophilia B(M) [11,12]. The location of the epitope on the FIX for 65-10 MoAb is (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) [21]. In this paper, we studied in more detail an epitope on FIX using the systematic substitution of different amino acids at each residue of the epitope peptides and the influence of the epitope peptide on the prolonged ox brain prothrombin time of the hemophilia B(M) plasma of 65-10 MoAb. In the replacement set of amino acids, peptides showing low or no reactivity to 65-10 were (175)Phe --> Asp, Glu, Gly, Lys, Arg, Thr, Val, (176)Asn --> Asp, Glu, Phe, Ile, Lys, Leu, Pro, Val, Tyr, (177)Asp --> Cys, Glu, Phe, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr, and (178) Phe --> Pro. These results imply that a hydrophobic molecule of (175) Phe, a hydrophilic molecule of (176)Asn, and a negative charge molecule of (177)Asp were important to the epitope. The 65-10 MoAb antibody neutralized the prolonged ox brain prothrombin time of hemophilia B(M) Nagoya 2 ((180)Arg -->Trp) and Kashihara ((181)Val --> Phe) as well as B(M) Kiryu ((313)Val --> Asp) and Niigata ((390)Ala --> Val). This reaction was inhibited by preincubation with a (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) peptide conjugated with bovine serum albumin (BSA). 65-10 MoAb that has been useful in detailing epitopes will be useful for qualitative analysis of hemophilia B(M).  相似文献   

15.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

16.
A new simple fast and reproducible purification procedure for the proteinase from rat liver mitochondria has been worked out. The specificity of cleavage of peptide bonds in glucagon, oxidized A and B chains of insulin and yeast proteinase B inhibitor by the proteinase of the inner mitochondrial membrane has been studied. The proteinase hydrolyzed three peptide bonds in glucagon, Tyr (13) - Leu (14), Trp (25) - Leu (26) and Phe (22) - Val (23) (minor cleavage site); none in the insulin A chain; one in the B chain of insulin, Tyr (16) - Leu (17); and three in the yeast proteinase B inhibitor, Phe (4) - Ile (5), Phe (20) - Leu (21) and Tyr (41) - Thr (42) (minor cleavage site).Thus, the mitochondrial proteinase cleaves peptide bonds at the carboxyl site of an aromatic amino acid and the amino site of a leucine, isoleucine, threonine or valine. The comparison with chymotrypsin A shows that the mitochondrial proteinase cleaves peptide bonds in a more restricted manner.  相似文献   

17.
Vaccinia DNA topoisomerase catalyzes the cleavage and re-joining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate formed at a specific target sequence, 5'-(C/T)CCTT downward arrow. The 314 aa protein consists of three protease-resistant structural domains demarcated by protease-sensitive interdomain segments referred to as the bridge and the hinge. The bridge is defined by trypsin-accessible sites at Arg80, Lys83 and Arg84. Photocrosslinking and proteolytic footprinting experiments suggest that residues near the interdomain bridge interact with DNA. To assess the contributions of specific amino acids to DNA binding and transesterification chemistry, we introduced alanine substitutions at 16 positions within a 24 aa segment from residues 63 to 86(DSKGRRQYFYGKMHVQNRNAKRDR). Assays of the rates of DNA relaxation under conditions optimal for the wild-type topoisomerase revealed significant mutational effects at six positions; Arg67, Tyr70, Tyr72, Arg80, Arg84 and Asp85. The mutated proteins displayed normal or near-normal rates of single-turnover transesterification to DNA. The effects of amino acid substitutions on DNA binding were evinced by inhibition of covalent adduct formation in the presence of salt and magnesium. The mutant enzymes also displayed diminished affinity for a subset of cleavage sites in pUC19 DNA. Tyr70 and Tyr72 were subjected to further analysis by replacement with Phe, His, Gln and Arg. At both positions, the aromatic moiety was important for DNA binding.  相似文献   

18.
Recognition by ribonuclease T1 of guanine bases via multidentate hydrogen bonding and stacking interactions appears to be mediated mainly by a short peptide segment formed by one stretch of a heptapeptide, Tyr42-Asn43-Asn44-Tyr45-Glu46-Gly47- Phe48. The segment displays a unique folding of the polypeptide chain--consisting of a reverse turn, Asn44-Tyr45-Glu46-Gly47, stabilized by a hydrogen-bond network involving the side chain of Asn44, the main-chain atoms of Asn44, Gly47 and Phe48 and one water molecule. The segment is connected to the C terminus of a beta-strand and expands into a loop region between Asn43 and Ser54. Low values for the crystallographic thermal parameters of the segment indicate that the structure has a rigidity comparable to that of a beta-pleated sheet. Replacement of Asn44 with alanine leads to a far lower enzymatic activity and demonstrates that the side chain of Asn44 plays a key role in polypeptide folding in addition to a role in maintaining the segment structure. Substitution of Asn43 by alanine to remove a weak hydrogen bond to the guanine base destabilized the transition state of the complex by 6.3 kJ/mol at 37 degrees C. In contrast, mutation of Glu46 to alanine to remove a strong hydrogen bond to the guanine base caused a destabilization of the complex by 14.0 kJ/mol. A double-mutant enzyme with substitutions of Asn43 by a histidine and Asn44 by an aspartic acid, to reproduce the natural substitutions found in ribonuclease Ms, showed an activity and base specificity similar to that of the wild-type ribonuclease Ms. The segment therefore appears to be well conserved in several fungal ribonucleases.  相似文献   

19.
An efficient random mutagenesis procedure coupled to a replica plate screen facilitated the isolation of mutant subtilisins from Bacillus amyloliquefaciens that had altered autolytic stability under alkaline conditions. Out of about 4000 clones screened, approximately 70 produced subtilisins with reduced stability (negatives). Two clones produced a more stable subtilisin (positives) and were identified as having a single mutation, either Ile107Val or Lys213Arg (the wild-type amino acid is followed by the codon position and the mutant amino acid). One of the negative mutants, Met50Val, was at a site where other homologous subtilisins contained a Phe. When the Met50Phe mutation was introduced into the B. amyloliquefaciens gene, the mutant subtilisin was more alkaline stable. The double mutant (Ile107Val/Lys213Arg) was more stable than the isolated single mutant parents. The triple mutant (Met50Phe/Ile107Val/Lys213Arg) was even more stable than Ile107Val/Lys213Arg (up to two times the autolytic half-time of wild-type at pH 12). These studies demonstrate the feasibility for improving the alkaline stability of proteins by random mutagenesis and identifying potential sites where substitutions from homologous proteins can improve alkaline stability.  相似文献   

20.
In vitro evolution of amphioxus insulin-like peptide to mammalian insulin   总被引:2,自引:0,他引:2  
Guo ZY  Shen L  Gu W  Wu AZ  Ma JG  Feng YM 《Biochemistry》2002,41(34):10603-10607
By site-directed mutagenesis, six insulin residues related to the insulin-receptor interaction were grafted, partially or fully, onto the corresponding position of a recombinant amphioxus insulin-like peptide (ILP) that contained the A- and B-domains of the deduced amphioxus ILP. After fermentation, purification, and enzymatic cleavage, six insulin-like double-chain ILP analogues were obtained: [A2Ile]ILP, [B12Val, B16Tyr]ILP, [B25Phe]ILP, [A2Ile, B12Val, B16Tyr, B25Phe]ILP (four-mutated ILP), [A2Ile, B12Val, B16Tyr, B24Phe, B25Phe]ILP (five-mutated ILP), and [A2Ile, B12Val, B16Tyr, B24Phe, B25Phe, B26Tyr]ILP (six-mutated ILP). Circular dichroism analysis showed that such replacement did not significantly affect their secondary and tertiary structure compared with that of the wild-type ILP. The insulin-receptor-binding activity of the four-, five-, and six-mutated ILP was 0.14%, 11%, and 11% of native insulin, respectively; the other three ILP analogues acquired none of the detectable insulin-receptor-binding potency. The growth-promoting activities of the five- and six-mutated ILP were both about 50% of native insulin, while that of the wild-type ILP was not detectable. By structure-function-based mutagenesis, the completely inactive amphioxus ILP was converted into a molecule with moderate mammalian insulin activity. These results indicated the following: first, the grafted as well as those inborn insulin-receptor-binding related residues can form an insulin-receptor-binding patch on the ILP analogues; second, the ILP can be used as a scaffold molecule to investigate the role of the insulin residues; third, the natural evolution of amphioxus ILP to mammalian insulin is a possible process and can be mimicked in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号