共查询到20条相似文献,搜索用时 0 毫秒
1.
Paul G. Jarvis 《Plant Ecology》1995,121(1-2):157-174
2.
3.
Background and aims
Knowledge about the effects of water and fertilizer on soil CO2 efflux (SCE) and Q 10 is essential for understanding carbon (C) cycles and for evaluating future global C balance. A two-year field experiment was conducted to determine the effects of water, fertilizer, and temperature on SCE in semiarid grassland in northern China.Methods
SCE, as well as environmental factors was measured in two grasslands, one with bunge needlegrass (BNE, Stipa bungeana) and one with purple alfalfa (ALF, Medicago sativa), with four treatments: CK (unwatered and unfertilized); W (50 mm water addition yr?1); F (50 kg phosphorus (P) fertilizer ha?1 yr?1 for ALF, 100 kg nitrogen (N)?+?50 kg P fertilizer ha?1 yr?1 for BNE); and W + F.Results
During the 11-month experimental period from July 2010 to October 2011, the addition of water consistently stimulated mean SCE in BNE and ALF, and the positive effects were relatively stronger during dry seasons. P fertilization consistently enhanced SCE in ALF, and the positive effect was strongly dependent on the availability of soil water. The effects of N plus P fertilization on SCE in BNE varied seasonally from significant increases to small reductions to no response. Water addition increased the Q 10 of SCE in ALF by 11 % but had no effect in BNE. Fertilization, however, reduced the Q 10 of SCE by 21 % and 13 % for BNE and ALF, respectively. Models that rely only on Q 10 underestimated the emissions of soil CO2 by 8–15 % at the study site, which was mediated by species and treatment.Conclusions
Responses of SCE and its temperature sensitivity to water and fertilizer may vary with species and depend on the period of measurement. Models of SCE need to incorporate the availability of ecosystemic water and nutrients, as well as species, and incorporate different environmental factors when determining the impact of water, nutrients, and species on SCE. 相似文献4.
Soil respiration in six temperate forests in China 总被引:14,自引:0,他引:14
Scaling soil respiration (RS), the major CO2 source to the atmosphere from terrestrial ecosystems, from chamber‐based measurements to ecosystems requires studies on variations and correlations of RS from various biomes and across geographic regions. However, few studies on RS are available for Chinese temperate forest despite the importance of this forest in the national and global carbon budgets. In this study, we conducted 18‐month RS measurements during 2004–2005 in six temperate forest types, representing the typical secondary forest ecosystems across various site conditions in northeastern China: Mongolian oak (Quercus mongolica Fisch.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), mixed deciduous (no dominant tree species), hardwood (dominated by Fraxinus mandshurica Rupr., Juglans mandshurica Maxim., and Phellodendron amurense Rupr.) forests, Korean pine (Pinus koraiensis Sieb. et Zucc.) and Dahurian larch (Larix gmelinii Rupr.) plantations. Our specific objectives were to: (1) explore relationships of RS against soil temperature and water content for the six forest ecosystems, (2) quantify annual soil surface CO2 flux and its relations to belowground carbon storage, (3) examine seasonal variations in RS and related environmental factors, and (4) quantify among‐ and within‐ecosystem variations in RS. The RS was positively correlated to soil temperature in all forest types, and was significantly influenced by the interactions of soil temperature and water content in the pine, larch, and mixed deciduous forests. The sensitivity of RS to soil temperature at 10 cm depth (Q10) ranged from 2.61 in the oak forest to 3.75 in the aspen‐birch forests. The Q10 tended to increase with soil water content until reaching a threshold, and then decline. The annual RS for the larch, pine, hardwood, oak, mixed deciduous, and aspen‐birch forests averaged 403, 514, 781, 785, 786, and 813 g C m?2 yr?1, respectively. The annual RS of the broadleaved forests was 72% greater than that of the coniferous forests. The annual RS was positively correlated to soil organic carbon (SOC) concentration at O horizon (R2=0.868) and total biomass of roots <0.5 cm in diameter (R2=0.748). The coefficient of variation (CV) of RS among forest types averaged 25% across the 18‐month measurements. The CV of RS within plots varied from 20% to 27%, significantly (P<0.001) greater than those among plots (9–15%), indicating the importance of the fine‐scaled heterogeneity in RS. This study emphasized that variations in soil respiration and potential sampling bias should be appropriately tackled for accurate soil CO2 flux estimates. 相似文献
5.
Wenzhong You Wenjun Wei Huidong Zhang Tingwu Yan Zhaokai Xing 《Trees - Structure and Function》2013,27(5):1417-1428
There is little information available regarding seasonal and annual variations in soil CO2 efflux from Korean Larch plantations, which are an important component of forests’ carbon balance in temperate China. In this study, the soil respiration rate (R s), soil temperature (T 10) and soil moisture (SM10) at 10 cm depth were observed in a Korean Larch (Larix olgensis Herry.) plantation in Northeast China from 2008 to 2012. Mean R s in growing season (GS) varied greatly, ranged from 2.32 ± 0.08 to 3.88 ± 0.09 μmol CO2 m?2 s?1 (mean ± SE) over the period of 2008–2012. In comparison with T-model, the increase of explained variability by applying both T 10 and SM10 to the T-M model is very small. It is indicated that R s was controlled largely by T 10 in the present study. By accounting for 22.2 and 17.7 % of the total soil CO2 emissions in 2010/2011 and 2011/2012, respectively, the soil CO2 efflux in dormant season (DS) was an essential component of the total soil CO2 efflux. The Q 10 value in the study period was always smaller for GS than DS, suggesting that soil carbon cycling may be more sensitive to the temperature changes at low than at high temperature range. These results indicated that climate changes may have great potential impacts on temperate Larch plantations in Northeast China, owing to soil carbon emissions of Larch plantation during the long period of DS being more sensitive to T 10 than in GS, and played a significant role in the annual forest ecosystems carbon budget. 相似文献
6.
Species diversity has attracted particular attention because of its significance for helping determine present species performance and likely future community composition. The spatial pattern of species diversity (species richness, abundance and Shannon diversity) in Changbai temperate forest in Northeastern China was studied to investigate the present and likely causes for the formation of spatial patterns. To fulfill this goal, three aspects of diversity were addressed: 1) changes in the relationships of the diversity variables, species richness, abundance and Shannon diversity, to sampling area and sampling design. The three diversity variables were found to respond to sampling area in a dissimilar way. Sampling design had no significant effect on the diversity variable-area curves. The power function, which was derived under the assumption that the forest was in equilibrium, did not fit the observed species-area curves, indicating that the Changbai temperate forest was probably not in equilibrium. 2) Variograms, used to examine the spatial structure of species diversity, showed that the spatial structure of species diversity in the Changbai temperate forest was weakly anisotropic. 3) Partitioning the variation of species diversity into spatial and environmental factors indicated that the spatial pattern of the Changbai forest community was unpredictable, probably because there were many undetermined processes controlling its development. 相似文献
7.
Increased nutrient availability can have a large impact in Australian woodland ecosystems, many of which are very poor in
nutrients, particularly phosphorus. A study was conducted in an urban Banksia woodland remnant in Perth, southwest Western Australia to test the hypothesis that the soil nutrient status in areas in good
condition (GC), poor condition invaded by the perennial grass Ehrharta calycina (PCe), and poor condition invaded by the perennial herb Pelargonium capitatum (PCp), is reflected in the nutrient status of the native and introduced species. Leaf concentrations of P, K, N, Na, Ca,
Mg, S, B, Cu, Fe, Mn and Zn of six native (Banksia attenuata, Banksia menziesii, Allocasuarina humilis, Melaleuca systena, Macrozamia fraseri and Conostylis aculeata) and four introduced species (Ehrharta calycina, Pelargonium capitatum, Gladiolus caryophyllaceus and Briza maxima), were measured. Soil pH, electrical conductivity, N (total), P (total), available P, K, S and organic C were assessed beneath
all species on all sites. Significantly higher concentrations of soil P (total) and P (HCO3) were found at PCe and PCp sites than GC sites, while PCp sites also had significantly higher soil concentrations for N (total)
and S. Principal Components Analysis of the leaf analyses showed (a) individual species have characteristically different
nutrient concentrations; (b) the introduced species Ehrharta calycina and Pelargonium capitatum clustered separately from each other and by vegetation condition. Leaf concentrations of P were significantly (P<0.05) higher, and K and Cu were significantly lower in PCe and PCp sites compared with those at GC sites. Introduced species
leaf nutrient concentrations were significantly greater than native species for all nutrients except Mn which was significantly
lower, with no differences for Mg and B. The results indicate a key role for P in the Banksia woodland, and we conclude that higher levels of available P at invaded sites are having a detrimental impact on the ecosystem.
These results provide new knowledge to enhance conservation practices for the management of the key threatening process of
invasion within a biodiversity hot spot.
Section Editor: T. Kalapos 相似文献
8.
Auristela Conserva José Luís Campana Camargo Denise Garcia De Santana Maria Teresa Fernandez Piedade 《Folia Geobotanica》2018,53(1):89-101
Amazonian floodplain forests (known as várzea) are classified into high or low várzea depending on the spatial position on the plains. This topographic feature exposes the terrain over different time periods of inundation, causing a major limiting factor for tree seedling establishment. We hypothesize that, strategically, most of the seeds produced by trees in low várzea forests germinate faster and in synchrony (temporally concentrated germination), and that their seedlings tend to have cotyledons without reserve or foliaceous cotyledons (PEF). By contrast, seeds produced by high-várzea specialist trees exhibit slower and temporally scattered germination, and their seedlings tend to have reserve storage cotyledons (CHR). Generalist species may show no clear pattern or may be related to high-várzea species. To test this hypothesis, diaspores of 10 tree species were collected: five of low-várzea specialist trees, three of high-várzea specialist trees and two of generalist species. Seedling emergence and morphology were monitored daily in a nursery for a period of 150 days of being subjected to non-flooded (sown directly in várzea soil) and flooded conditions (15 days in water before sowing in the same soil). The seedling emergence of low-várzea species showed an increase of 37% in germinability whereas high-várzea and generalist species exhibited a decrease of 38% and 35% of germinability, respectively. Foliaceous cotyledons were preferentially found in seedlings of low-várzea species, and storage cotyledons were more common in those of high-várzea species, indicating how cotyledon morphology may determine the amount and use of resources available to a seedling during the first stages of establishment and growth. Conservation plans aiming for the maintenance of ecosystem services must consider these strategies. 相似文献
9.
Lanta Vojtěch Liancourt Pierre Altman Jan Černý Tomáš Dvorský Miroslav Fibich Pavel Götzenberger Lars Hornych Ondřej Miklín Jan Petřík Petr Pyšek Petr Čížek Lukáš Doležal Jiří 《Biological invasions》2022,24(8):2513-2528
Biological Invasions - Invasions of alien plants pose a serious threat to native biodiversity and ecosystem processes. Forests are considered more resistant to invasion due to limited light... 相似文献
10.
中国森林生态系统土壤CO2释放分布规律及其影响因素 总被引:1,自引:1,他引:1
联合国气候框架公约的签署提升了人们对全球变暖、碳循环变化的关注。陆地生态系统在全球变暖格局下的地位与作用,尤其是土壤碳库对全球变暖格局的响应是全球变化研究的焦点。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,也就成为各国生态学家研究的重点内容。在对我国森林生态系统CO2释放通量以及相关气候、生物等因子的资料进行收集、整理和分析的基础上,探讨了我国森林生态系统土壤CO2释放的分布规律,以及这种规律性分布的气候、生物影响因素。对于我国这样一个南北跨度大的国家,不同区域的森林生态系统土壤CO2释放通量间存在较大的差异,在全国尺度上,森林生态系统土壤CO2释放通量平均值为(1.79±0.86)gCm^-2d^-1,而且土壤CO2释放通量随着纬度增加逐渐降低。作为一个复杂的生态过程,土壤CO2释放受到生物、非生物因子或独立、或综合的影响。通过分析指出,在全国尺度上,年均温、降雨量、群落净生产力及凋落物量显著地影响森林土壤CO2释放通量。同时,也正是这些影响因子的纬度分布,导致了我国森林生态系统土壤CO2释放通量的纬度分布规律。作为衡量土壤CO2释放对温度敏感性的重要指标,计算了我国森林生态系统土壤CO2释放温度敏感性系数-Q10值,约为1.5,该值显著低于全球平均水平,2.0。 相似文献
11.
Oak (Quercus spp.) and hornbeam (Carpinus spp.) are one of dominant tree species in East Asian temperate broad leaf deciduous forests and many insect species, including more than 65% of Lepidoptera species, feed on these trees. We sampled lepidopteran caterpillars from two 0.1 ha plots in a temperate forest to investigate the role of dominant trees (oaks and hornbeams) in herbivore community. In total, we identified 738 caterpillars from 223 Lepidopteran species on 34 tree species. Most caterpillar species were from species-rich families such as Geometridae 25% (56 spp.), Noctuidae, and Tortricidae. After excluding dominant trees, plant-herbivore network analyses showed increased network specialization and nestedness and decreased generality and vulnerability. These results suggest that oaks and hornbeams support a large Lepidopteran herbivore community, and co-occurring plant species support diverse but specific herbivores. Geographical distribution and plant community are closely related to diversity of the herbivore community. Future work is needed to investigate the likelihood that specialist herbivores become relatively more abundant in the forest as oaks are succeeded by hornbeams. 相似文献
12.
Complementary soil exploration by the root systems of coexisting tree species has been hypothesised to result in a higher root biomass of mixed forests than of monocultures but the existing evidence for a belowground diversity effect in forests is scarce and not conclusive. In a species‐rich temperate broad‐leaved forest, we analysed the fine root biomass (roots ≤ 2 mm) and necromass in 100 plots differing in tree species diversity (one to three species) and species composition (all possible combinations of five species of the genera Acer, Carpinus, Fagus, Fraxinus and Tilia) which allowed us to separate possible species diversity and species identity effects on fine root biomass. We found no evidence of a positive diversity effect on standing fine root biomass and thus of overyielding in terms of root biomass. Root necromass decreased with increasing species diversity at marginal significance. Various lines of evidence indicate significant species identity effects on fine root biomass (10–20% higher fine root biomass in plots with presence of maple and beech than in plots with hornbeam; 100% higher fine root biomass in monospecific beech and ash plots than in hornbeam plots; differences significant). Ash fine roots tended to be over‐represented in the 2‐ and 3‐species mixed plots compared to monospecific ash plots pointing at apparent belowground competitive superiority of Fraxinus in this mixed forest. Our results indicate that belowground overyielding and spatial complementarity of root systems may be the exception rather than the rule in temperate mixed forests. 相似文献
13.
Carlo Calfapietra Elizabeth A. Ainsworth Claus Beier Paolo De Angelis David S. Ellsworth Douglas L. Godbold George R. Hendrey Thomas Hickler Marcel R. Hoosbeek David F. Karnosky John King Christian Körner Andrew D.B. Leakey Keith F. Lewin Marion Liberloo Stephen P. Long Martin Lukac Rainer Matyssek Franco Miglietta Reinhart Ceulemans 《Trends in plant science》2010,15(1):5-10
14.
Abstract We present a model of gaps in the vertical structure of forest vegetation. The traditional model of a forest gap assumes the existence of a ‘hole’ in the uppermost canopy layer, often extending down to near the ground. The present model extends the concept to gaps at any level, including those in lower layers below an intact canopy or subcanopy. It assumes that gaps at any level represent spaces with unused resources, especially favourable for plant growth and survival. Evidence from temperate and tropical forests indicates that gaps in the subcanopy and understorey layers below intact canopies are common, and that plants have higher growth rates in them than in non-gap sites. We also extend this model to below-ground gaps in the root zone. 相似文献
15.
Demography, spatial pattern, and diversity of canopy and subcanopy trees, shrubs, and lianas were compared in two cool and two warm temperate North American forests, paired at 30° and 40° north latitudes. All woody stems 1 cm dbh in 16 randomly located, non-contiguous plots totalling 1 ha at each of the four sites were measured, mapped, and identified. Basal area and overall density did not differ between latitudes. Demographic and spatial analyses revealed remarkable similarity in spatial dispersion, irrespective of density or species composition. At all sites, dispersion of canopy trees was random but all understory stems were uniformly distributed relative to all canopy trees. Species diversity and vertical structure differed between the warm and cool temperate sites, especially in species composition of individual strata. Associations of understory species relative to canopy species were more random at 30° than at 40° north, where a higher degree of association between canopy and understory species' patterns, coupled with their size class distributions, suggested more lengthy regeneration cycles and an alternation of species assemblages. The forests at 30°, those subject to periodic canopy disturbance by hurricanes, had more vertical mixing of species (i.e., canopy species represented in all size classes), more tree saplings, and significantly more shrub and liana species. 相似文献
16.
Plant species diversity in abandoned coppice forests in a temperate deciduous forest area of central Japan 总被引:1,自引:0,他引:1
We investigated plant species diversity as it related to stand structure and landscape parameters in abandoned coppice forests in a temperate, deciduous forest area of central Japan, where Fagus crenata was originally dominant. The species occurring in the study plots were classified into habitat types based on a statistical analysis of their occurrence bias in particular habitats (e.g., primary forest, coniferous plantation) in the landscape studied. The relationships between stand structure, which reflected the gradient of management, and forest floor plant species diversity (H and J) and richness (number of species per unit area) were not significant. However, these factors did influence the forest floor plant composition of the different types of habitat. According to the multiple regression analysis, species diversity and the richness of forest floor plants was affected by landscape parameters rather than by stand structure. For trees, species richness was mainly affected by the relative dominance of F. crenata, which is one of the stand structure parameters that decreases with intensive management. This is probably because many of the tree species that are characteristic of coppice forests increase after F. crenata have been eliminated by management; these species are not dominant in the original forest, where they are suppressed by F. crenata, the shade-tolerant dominant species. The species diversity (H and J) of trees was positively correlated with some landscape parameters, including the road density around the study plot, which may be associated with the intensity of management activity. The number of disturbance-tolerant species increased with increasing road density. Stand structure mainly affected disturbance-intolerant forest floor plant species and disturbance-tolerant tree species. Thus, the species diversity responses differed between forest floor plants and trees. The impact of forest management on species diversity was more prominent for forest floor plants. 相似文献
17.
Ectomycorrhizal fungal succession in mixed temperate forests 总被引:7,自引:1,他引:7
Ectomycorrhizal (ECM) fungal communities of Douglas-fir (Pseudotsuga menziesii) and paper birch (Betula papyrifera) were studied along a chronosequence of forest development after stand-replacing disturbance. Previous studies of ECM succession did not use molecular techniques for fungal identification or lacked replication, and none examined different host species. Four age classes of mixed forests were sampled: 5-, 26-, 65-, and 100-yr-old, including wildfire-origin stands from all four classes and stands of clearcut origin from the youngest two classes. Morphotyping and DNA sequences were used to identify fungi on ECM root tips. ECM fungal diversities were lower in 5-yr-old than in older stands on Douglas-fir, but were similar among age classes on paper birch. Host-specific fungi dominated in 5-yr-old stands, but host generalists were dominant in the oldest two age classes. ECM fungal community compositions were similar in 65- and 100-yr-old stands but differed among all other pairs of age classes. Within the age range studied, site-level ECM fungal diversity reached a plateau by the 26-yr-old age class, while community composition stabilized by the 65-yr-old class. Simple categories such as 'early stage', 'multi stage', and 'late stage' were insufficient to describe fungal species' successional patterns. Rather, ECM fungal succession may be best described in the context of stand development. 相似文献
18.
David C. Glenn-Lewin 《Plant Ecology》1977,33(2-3):153-162
Summary Samples from temperate forest communities across the North American continent were analysed for correlations of plant species diversity with environment and community structure.Alpha diversity relationships are complicated by different vegetation patterns and community history. The differences in community diversity patterns may be due to the independent evolution of communities in different regions.Results of analyses were: 1) on a continental scale plant species diversity is related to mean annual temperature, but not precipitation; 2) diversity is substantially greater in continental climates than in maritime regions; 3) diversity-community structure relationships are generally weak, except 4) there is an inverse relationship between diversity and abundance of conifer tree species. Attempts to relate diversity to environmental parameters with multiple regression techniques met with only moderate success.I thank R. H. Whittaker, R. K. Peet and H. G. Gauch, Jr., for their help and comments. I am especially grateful to R. H. Whittaker for making his data available to me. Computation was supported in part by N.S.F. grant No. GB-30679. I was supported by a Nat. Inst. of Health Traineeship during part of this study. 相似文献
19.
Disturbance is claimed to be one of the most important triggers of biological invasions. There is a lack of data about disturbance impacts on the youngest life stage of invasive trees and shrubs. Thus, we aimed to assess the role of disturbances in shaping responses of natural regeneration of three model invasive species—Prunus serotina Ehrh., Quercus rubra L., and Robinia pseudoacacia L.—to disturbances in forest plant communities. Our study was conducted over 3 years on 372 study plots (100 m2), across nine types of temperate forests in Wielkopolski National Park (Poland). Disturbance was assessed using ecological indicator values for disturbance severity and frequency. Our study revealed the high importance of disturbance on species composition of understory vegetation. We also found relationships between ecological success (density and biomass of natural regeneration) of invaders and disturbance indices. These models were statistically significant but their effect sizes were low. Due to the low effect sizes, we can state only limited conclusions about impact of disturbance on ecological success of invasive species natural regeneration. The results suggest that for seedlings (up to 50 cm height—threshold between understory and shrub layer) disturbance, a leading factor in biological invasions of numerous taxa, has a small role in this case. Thus, we may assume that their ecological success is connected with stochastic processes in populations of the invader’s seedlings, rather than with stochastic release from competition caused by disturbances. 相似文献
20.
Jacobson DJ Powell AJ Dettman JR Saenz GS Barton MM Hiltz MD Dvorachek WH Glass NL Taylor JW Natvig DO 《Mycologia》2004,96(1):66-74
The fungal genus Neurospora has a distinguished history as a laboratory model in genetics and biochemistry. The most recent milestone in this history has been the sequencing of the genome of the best known species, N. crassa. The hope and promise of a complete genome sequence is a full understanding of the biology of the organism. Full understanding cannot be achieved, however, in the absence of fundamental knowledge of natural history. We report that species of Neurospora, heretofore thought to occur mainly in moist tropical and subtropical regions, are common primary colonizers of trees and shrubs killed by forest fires in western North America, in regions that are often cold and dry. Surveys in 36 forest-fire sites from New Mexico to Alaska yielded more than 500 cultures, 95% of which were the rarely collected N. discreta. Initial characterization of genotypes both within a site and on a single tree showed diversity consistent with sexual reproduction of N. discreta. These discoveries fill important gaps in knowledge of the distribution of members of the genus on both large and small spatial scales and provide the framework for future studies in new regions and microhabitats. The overall result is that population biology and genetics now can be combined, placing the genus Neurospora in a unique position to expand its role in experimental biology as a useful model organism for ecology, population genetics and evolution. 相似文献