首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The majority of metazoan genomes consist of nonprotein-coding regions, although the functional significance of most noncoding DNA sequences remains unknown. Highly conserved noncoding sequences (CNSs) have proven to be reliable indicators of functionally constrained sequences such as cis-regulatory elements and noncoding RNA genes. However, CNSs may arise from nonselective evolutionary processes such as genomic regions with extremely low mutation rates known as mutation "cold spots." Here we combine comparative genomic data from recently completed insect genome projects with population genetic data in Drosophila melanogaster to test predictions of the mutational cold spot model of CNS evolution in the genus Drosophila. We find that point mutations in intronic and intergenic CNSs exhibit a significant reduction in levels of divergence relative to levels of polymorphism, as well as a significant excess of rare derived alleles, compared with either the nonconserved spacer regions between CNSs or with 4-fold silent sites in coding regions. Controlling for the effects of purifying selection, we find no evidence of positive selection acting on Drosophila CNSs, although we do find evidence for the action of recurrent positive selection in the spacer regions between CNSs. We estimate that approximately 85% of sites in Drosophila CNSs are under constraint with selection coefficients (N(e)s) on the order of 10-100, and thus, the estimated strength and number of sites under purifying selection is greater for Drosophila CNSs relative to those in the human genome. These patterns of nonneutral molecular evolution are incompatible with the mutational cold spot hypothesis to explain the existence of CNSs in Drosophila and, coupled with similar findings in mammals, argue against the general likelihood that CNSs are generated by mutational cold spots in any metazoan genome.  相似文献   

2.
Identification of conserved regions between the genomes of distant species is a crucial step in the reconstruction of the genomic organization of their last common ancestor. Here we confirm for the first time with robust evidence, the existence of a region of conserved synteny between the human genome and the Drosophila genome. This evolutionarily conserved synteny involves the human MHC and paralogous regions, and we identified 19 conserved genes between these two species in a Drosophila genomic region of less than 2 Mb. The statistical analysis of the distribution of these 19 genes between the Drosophila and human genomes shows that it cannot be explained by chance. Our study constitutes a first step towards the reconstruction of the genome of Urbilateria (the ancestor of all bilaterian) and allows for a better understanding of the evolutionary history of our genome as well as other metazoan genomes.  相似文献   

3.
Codon Usage Bias and Base Composition of Nuclear Genes in Drosophila   总被引:16,自引:8,他引:8       下载免费PDF全文
E. N. Moriyama  D. L. Hartl 《Genetics》1993,134(3):847-858
The nuclear genes of Drosophila evolve at various rates. This variation seems to correlate with codon-usage bias. In order to elucidate the determining factors of the various evolutionary rates and codon-usage bias in the Drosophila nuclear genome, we compared patterns of codon-usage bias with base compositions of exons and introns. Our results clearly show the existence of selective constraints at the translational level for synonymous (silent) sites and, on the other hand, the neutrality or near neutrality of long stretches of nucleotide sequence within noncoding regions. These features were found for comparisons among nuclear genes in a particular species (Drosophila melanogaster, Drosophila pseudoobscura and Drosophila virilis) as well as in a particular gene (alcohol dehydrogenase) among different species in the genus Drosophila. The patterns of evolution of synonymous sites in Drosophila are more similar to those in the prokaryotes than they are to those in mammals. If a difference in the level of expression of each gene is a main reason for the difference in the degree of selective constraint, the evolution of synonymous sites of Drosophila genes would be sensitive to the level of expression among genes and would change as the level of expression becomes altered in different species. Our analysis verifies these predictions and also identifies additional selective constraints at the translational level in Drosophila.  相似文献   

4.
DAGchainer: a tool for mining segmental genome duplications and synteny   总被引:8,自引:0,他引:8  
SUMMARY: Given the positions of protein-coding genes along genomic sequence and probability values for protein alignments between genes, DAGchainer identifies chains of gene pairs sharing conserved order between genomic regions, by identifying paths through a directed acyclic graph (DAG). These chains of collinear gene pairs can represent segmentally duplicated regions and genes within a single genome or syntenic regions between related genomes. Automated mining of the Arabidopsis genome for segmental duplications illustrates the use of DAGchainer.  相似文献   

5.
《Fly》2013,7(3):158-161
Comparative genomics has identified regions of chromosomes susceptible to participate in rearrangements that modify gene order and genome architecture. Additionally, despite the high levels of genome rearrangement, unusually large regions that remain unaffected have also been uncovered. Functional constraints, such as long-range enhancers or local coregulation of neighboring genes, are thought to explain the maintenance of gene order (i.e., collinearity conservation) among distantly related species since the disruption of these protected regions would cause detrimental misregulation of gene expression. Local enrichment of certain genetic elements in regions of conserved collinearity has been used to support the existence of regulatory-based constraints, although the evidence is largely circumstantial. Indeed, a mechanism of chromosome evolution based only on the existence of fragile regions (i.e., those more susceptible to breaks) can also give rise to extended collinearity conservation, making it difficult to determine whether conserved gene organization is actually caused by functional constraints. Chromosome engineering coupled with genome wide expression profiling and phenotypic assays can provide unambiguous evidence for the presence of functional constraints acting on particular genomic regions. We have recently used this integrated approach to evaluate the presence and nature of putative constraints acting on one of the largest chromosomal regions conserved across nine species of Drosophila. We propose that regulatory-based constraints might not suffice to explain the maintenance of gene organization of some chromosome domains over evolutionary time.  相似文献   

6.
7.
8.
Why gene order is conserved over long evolutionary timespans remains elusive. A common interpretation is that gene order conservation might reflect the existence of functional constraints that are important for organismal performance. Alteration of the integrity of genomic regions, and therefore of those constraints, would result in detrimental effects. This notion seems especially plausible in those genomes that can easily accommodate gene reshuffling via chromosomal inversions since genomic regions free of constraints are likely to have been disrupted in one or more lineages. Nevertheless, no empirical test has been performed to this notion. Here, we disrupt one of the largest conserved genomic regions of the Drosophila genome by chromosome engineering and examine the phenotypic consequences derived from such disruption. The targeted region exhibits multiple patterns of functional enrichment suggestive of the presence of constraints. The carriers of the disrupted collinear block show no defects in their viability, fertility, and parameters of general homeostasis, although their odorant perception is altered. This change in odorant perception does not correlate with modifications of the level of expression and sex bias of the genes within the genomic region disrupted. Our results indicate that even in highly rearranged genomes, like those of Diptera, unusually high levels of gene order conservation cannot be systematically attributed to functional constraints, which raises the possibility that other mechanisms can be in place and therefore the underpinnings of the maintenance of gene organization might be more diverse than previously thought.  相似文献   

9.
In eukaryotic genome biology, the genomic organization inside the three-dimensional(3 D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina(NL)is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains(LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin(PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region,how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.  相似文献   

10.
Jabbari K  Bernardi G 《Gene》2000,247(1-2):287-292
In the present work we show that in the Drosophila genome (which covers a 37-51% GC range at a DNA size of approx.50kb) a linear correlation holds between GC (or GC(3)50kb) genomic sequences embedding them. This correlation allows us to position the two compositional distributions of (a) coding sequences, and (b) of long DNA segments relative to each other and to calculate gene concentration across the compositional range of the Drosophila genome. Using this approach, we show that gene concentration increases with increasing GC of the regions embedding the genes, reaching a 7-fold higher level in the GC-richest regions compared with the GC-poorest regions. The gene distribution of the Drosophila genome is, therefore, similar to (although less striking than) that of the human genome, whereas it is very different from those of the Arabidopsis genome, which has about the same size as the Drosophila genome.  相似文献   

11.
Bhutkar A  Schaeffer SW  Russo SM  Xu M  Smith TF  Gelbart WM 《Genetics》2008,179(3):1657-1680
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.  相似文献   

12.
13.
14.
We present the complete nucleotide sequence of a Drosophila alpha-amylase gene and its flanking regions, as determined by cDNA and genomic sequence analysis. This gene, unlike its mammalian counterparts, contains no introns. Nevertheless the insect and mammalian genes share extensive nucleotide similarity and the insect protein contains the four amino acid sequence blocks common to all alpha-amylases. In Drosophila melanogaster, there are two closely-linked copies of the alpha-amylase gene and they are divergently transcribed. In the 5'-regions of the two gene-copies we find high sequence divergence, yet the typical eukaryotic gene expression motifs have been maintained. The 5'-terminus of the alpha-amylase mRNA, as determined by primer extension analysis, maps to a characteristic Drosophila sequence motif. Additional conserved elements upstream of both genes may also be involved in amylase gene expression which is known to be under complex controls that include glucose repression.  相似文献   

15.
With the advent of high-throughput sequencing, the availability of genomic sequence for comparative genomics is increasing exponentially. Numerous completed plant genome sequences enable characterization of patterns of the retention and evolution of genes within gene families due to multiple polyploidy events, gene loss and fractionation, and differential evolutionary pressures over time and across different gene families. In this report, we trace the changes that have occurred in 12 surviving homoeologous genomic regions from three rounds of polyploidy that contributed to the current Glycine max genome: a genome triplication before the origin of the rosids (~130 to 240 million years ago), a genome duplication early in the legumes (~58 million years ago), and a duplication in the Glycine lineage (~13 million years ago). Patterns of gene retention following the genome triplication event generally support predictions of the Gene Balance Hypothesis. Finally, we find that genes in networks with a high level of connectivity are more strongly conserved than those with low connectivity and that the enrichment of these highly connected genes in the 12 highly conserved homoeologous segments may in part explain their retention over more than 100 million years and repeated polyploidy events.  相似文献   

16.
17.
18.
19.
Hahn MW  Han MV  Han SG 《PLoS genetics》2007,3(11):e197
Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and loss of genes at unprecedented resolution. We find large numbers of both gains and losses, with over 40% of all gene families differing in size among the Drosophila. Approximately 17 genes are estimated to be duplicated and fixed in a genome every million years, a rate on par with that previously found in both yeast and mammals. We find many instances of extreme expansions or contractions in the size of gene families, including the expansion of several sex- and spermatogenesis-related families in D. melanogaster that also evolve under positive selection at the nucleotide level. Newly evolved gene families in our dataset are associated with a class of testes-expressed genes known to have evolved de novo in a number of cases. Gene family comparisons also allow us to identify a number of annotated D. melanogaster genes that are unlikely to encode functional proteins, as well as to identify dozens of previously unannotated D. melanogaster genes with conserved homologs in the other Drosophila. Taken together, our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this genomic revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号