首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historically, duplicate genes have been regarded as a major source of novel genetic material. However, recent work suggests that chimeric genes formed through the fusion of pieces of different genes may also contribute to the evolution of novel functions. To compare the contribution of chimeric and duplicate genes to genome evolution, we measured their prevalence and persistence within Drosophila melanogaster. We find that ~80.4 duplicates form per million years, but most are rapidly eliminated from the genome, leaving only 4.1% to be preserved by natural selection. Chimeras form at a comparatively modest rate of ~11.4 per million years but follow a similar pattern of decay, with ultimately only 1.4% of chimeras preserved. We propose two mechanisms of chimeric gene formation, which rely entirely on local, DNA-based mutations to explain the structure and placement of the youngest chimeric genes observed. One involves imprecise excision of an unpaired duplication during large-loop mismatch repair, while the other invokes a process akin to replication slippage to form a chimeric gene in a single event. Our results paint a dynamic picture of both chimeras and duplicate genes within the genome and suggest that chimeric genes contribute substantially to genomic novelty.  相似文献   

2.
Zhan ZB  Zhang Y  Zhao RP  Wang W 《动物学研究》2011,32(6):585-595
Origin and evolution of new genes contribute a lot to genome diversity. New genes usually form chimeric gene structures through DNA-based exon shuffling and generate proteins with novel functions. We investigated polymorphism of 14 chimeric new genes in Drosophila melanogaster populations and found that eight have premature stop codons in some individuals while six are intact in the population, four of which are under negative selection, suggesting the two evolutionary fates of new chimeric genes after origination: accumulate premature stop codons and pseudolize, or acquire functions and get fixed by natural selection. Different from new genes originated through RNA-based duplication (retroposition) which are usually testis-specific or male-specific expressed, the expression patterns of these new genes through DNA-based exon shuffling are temporally and spatially diverse, implying that they may have the potential to evolve various biological functions despite that they may become pseudogenes or non-protein-coding RNA genes.  相似文献   

3.
Llopart A  Comeron JM 《Genetics》2008,179(2):1009-1020
Our understanding of the role of positive selection in the evolution of genes with male-biased expression can be hindered by two observations. First, male-biased genes tend to be overrepresented among lineage-specific genes. Second, novel genes are prone to experience bursts of adaptive evolution shortly after their formation. A thorough study of the forces acting on male-biased genes therefore would benefit from phylogenywide analyses that could distinguish evolutionary trends associated with gene formation and later events, while at the same time tackling the interesting question of whether adaptive evolution is indeed idiosyncratic. Here we investigate the roughex (rux) gene, a dose-dependent regulator of Drosophila spermatogenesis with a C-terminal domain responsible for nuclear localization that shows a distinct amino acid sequence in the melanogaster subgroup. We collected polymorphism and divergence data in eight populations of six Drosophila species, for a total of 99 rux sequences, to study rates and patterns of evolution at this male-biased gene. Our results from two phylogeny-based methods (PAML and HyPhy) as well as from population genetics analyses (McDonald-Kreitman-based tests) indicate that amino acid replacements have contributed disproportionately to divergence, consistent with adaptive evolution at the Rux protein. Analyses based on extant variation show also the signature of recent selective sweeps in several of the populations surveyed. Most important, we detect the significant and consistent signature of positive selection in several independent Drosophila lineages, which evidences recurrent and concurrent events of adaptive evolution after rux formation.  相似文献   

4.
Gene duplication is postulated to have played a major role in the evolution of biological novelty. Here, gene duplication is examined across levels of biological organization in an attempt to create a unified picture of the mechanistic process by which gene duplication can have played a role in generating biodiversity. Neofunctionalization and subfunctionalization have been proposed as important processes driving the retention of duplicate genes. These models have foundations in population genetic theory, which is now being refined by explicit consideration of the structural constraints placed upon genes encoding proteins through physical chemistry. Further, such models can be examined in the context of comparative genomics, where an integration of gene-level evolution and species-level evolution allows an assessment of the frequency of duplication and the fate of duplicate genes. This process, of course, is dependent upon the biochemical role that duplicated genes play in biological systems, which is in turn dependent upon the mechanism of duplication: whole genome duplication involving a co-duplication of interacting partners vs. single gene duplication. Lastly, the role that these processes may have played in driving speciation is examined.  相似文献   

5.
Li Y  Zhang L  Zhang D  Zhang X  Lu X 《遗传学报》2010,37(10):695-702
It has been shown that duplicate genes on the X chromosome evolve much faster than duplicate genes on autosomes in Drosophila melanogaster.However,whether this phenomenon is general and can be applied to other species is not known.Here we examined this issue in chicken that have heterogametic females(females have ZW sex chromosome).We compared sequence divergence of duplicate genes on the Z chromosome with those on autosomes.We found that duplications on the Z chromosome indeed evolved faster than those on autosomes and show distinct patterns of molecular evolution from autosomal duplications.Examination of the expression of duplicate genes revealed an enrichment of duplications on the Z chromosome having male-biased expression and an enrichment of duplications on the autosomes having female-biased expression.These results suggest an evolutionary trend of the recruitment of duplicate genes towards reproduction-specific function.The faster evolution of duplications on Z than on the autosomes is most likely contributed by the selective forces driving the fixation of adaptive mutations on Z.Therefore,the common phenomena observed in both flies and chicken suggest that duplicate genes on sex chromosomes have distinct dynamics and are more influenced by natural selection than antosomal duplications,regardless of the kind of sex determination systems.  相似文献   

6.
Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.  相似文献   

7.
Gene duplication provides a major source of new genes for evolutionary novelty and ecological adaptation. However, the maintenance of duplicated genes and their relevance to adaptive evolution has long been debated. Insect trehalase (Treh) plays key roles in energy metabolism, growth, and stress recovery. Here, we show that the duplication of Treh in Lepidoptera (butterflies and moths) is linked with their adaptation to various environmental stresses. Generally, two Treh genes are present in insects: Treh1 and Treh2. We report three distinct forms of Treh in lepidopteran insects, where Treh1 was duplicated into two gene clusters (Treh1a and Treh1b). These gene clusters differ in gene expression patterns, enzymatic properties, and subcellular localizations, suggesting that the enzymes probably underwent sub‐ and/or neofunctionalization in the lepidopteran insects. Interestingly, selective pressure analysis provided significant evidence of positive selection on duplicate Treh1b gene in lepidopteran insect lineages. Most positively selected sites were located in the alpha‐helical region, and several sites were close to the trehalose binding and catalytic sites. Subcellular adaptation of duplicate Treh1b driven by positive selection appears to have occurred as a result of selected changes in specific sequences, allowing for rapid reprogramming of duplicated Treh during evolution. Our results suggest that gene duplication of Treh and subsequent functional diversification could increase the survival rate of lepidopteran insects through various regulations of intracellular trehalose levels, facilitating their adaptation to diverse habitats. This study provides evidence regarding the mechanism by which gene family expansion can contribute to species adaptation through gene duplication and subsequent functional diversification.  相似文献   

8.
Summary OmpC and OmpF are major outer membrane proteins and although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine their differences, we have constructed a series of ompC-ompF chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The recombination sites in the chimeric genes were localized by means of restriction endonuclease analysis and nucleotide sequence determination. Most of the chimeric gene products were accumulated in the outer membrane. One of the chimeric gene products, with a fusion site in a central region between the OmpC and OmpF proteins, was normally expressed but not accumulated in the outer membrane. The trimeric structures of some of the chimeric gene products appeared to be extremely unstable in a SDS solution. From these results, domains contributing to the formation of specific structures in which the OmpC and OmpF proteins differ were identified. Bacterial cells possessing the chimeric gene products were also investigated as to their sensitivity to phages that require either OmpC or OmpF as a receptor component. With the aid of the chimeric gene products, the immunogenic determinants for three anti-OmpC monoclonal antibodies were found to be localized at different portions of the OmpC polypeptide: the N-terminal, central and C-terminal portions, respectively.  相似文献   

9.
Genes are gained and lost over the course of evolution. A recent study found that over 1,800 new genes have appeared during primate evolution and that an unexpectedly high proportion of these genes are expressed in the human brain. But what are the molecular functions of newly evolved genes and what is their impact on an organism's fitness? The acquisition of new genes may provide a rich source of genetic diversity that fuels evolutionary innovation. Although gene manipulation experiments are not feasible in humans, studies in model organisms, such as Drosophila melanogaster, have shown that new genes can quickly become integrated into genetic networks and become essential for survival or fertility. Future studies of new genes, especially chimeric genes, and their functions will help determine the role of genetic novelty in the adaptation and diversification of species.  相似文献   

10.
11.
Yang J  Xie Z  Glover BJ 《The New phytologist》2005,165(2):623-632
NF-Y is a ubiquitous CCAAT-binding factor composed of NF-YA, NF-YB and NF-YC. Multiple genes encoding NF-Y subunits have been identified in plant genomes. It remains unclear whether the duplicate genes underwent different evolutionary patterns. Likelihood-ratio tests were used to examine whether the amino acid substitution rates are the same between duplicate genes. The influences of selection on evolution were evaluated by comparing the conservative and radical amino acid substitution rates, as well as maximum-likelihood analysis. Some NF-YB and NF-YC duplicates showed significant evidence of asymmetric evolution but not the NF-YA duplicates. Most amino acid replacements in the NF-YB and NF-YC duplicates result in changes in hydropathy, polar requirement and polarity. The physicochemical changes in the sequences of NF-YB seem to be coupled to asymmetric divergence in gene function. Plant NF-Y genes have evolved in different patterns. Relaxed selective constraints following gene duplication are most likely responsible for the unequal evolutionary rates and distinct divergence patterns of duplicate NF-Y genes. Positive selection may have promoted amino acid hydropathy changes in the NF-YC duplicates.  相似文献   

12.
The impact of the biological network structures on the divergence between the two copies of one duplicate gene pair involved in the networks has not been documented on a genome scale. Having analyzed the most recently updated Database of Interacting Proteins (DIP) by incorporating the information for duplicate genes of the same age in yeast, we find that there was a highly significantly positive correlation between the level of connectivity of ancient genes and the number of shared partners of their duplicates in the protein-protein interaction networks. This suggests that duplicate genes with a low ancestral connectivity tend to provide raw materials for functional novelty, whereas those duplicate genes with a high ancestral connectivity tend to create functional redundancy for a genome during the same evolutionary period. Moreover, the difference in the number of partners between two copies of a duplicate pair was found to follow a power-law distribution. This suggests that loss and gain of interacting partners for most duplicate genes with a lower level of ancestral connectivity is largely symmetrical, whereas the "hub duplicate genes" with a higher level of ancient connectivity display an asymmetrical divergence pattern in protein-protein interactions. Thus, it is clear that the protein-protein interaction network structures affect the divergence pattern of duplicate genes. Our findings also provide insights into the origin and development of biological networks.  相似文献   

13.
14.
Plant genomes appear to exploit the process of gene duplication as a primary means of acquiring biochemical and developmental flexibility. Thus, for example, most of the enzymatic components of plant secondary metabolism are encoded by small families of genes that originated through duplication over evolutionary time. The dynamics of gene family evolution are well illustrated by the genes that encode chalcone synthase (CHS), the first committed step in flavonoid biosynthesis. We review pertinent facts about CHS evolution in flowering plants with special reference to the morning glory genus, Ipomoea. Our review shows that new CHS genes are recruited recurrently in flowering plant evolution. Rates of nucleotide substitution are frequently accelerated in new duplicate genes, and there is clear evidence for repeated shifts in enzymatic function among duplicate copies of CHS genes. In addition, we present new data on expression patterns of CHS genes as a function of tissue and developmental stage in the common morning glory (I. purpurea). These data show extensive differentiation in gene expression among duplicate copies of CHS genes. We also show that a single mutation which blocks anthocyanin biosynthesis in the floral limb is correlated with a loss of expression of one of the six duplicate CHS genes present in the morning glory genome. This suggests that different duplicate copies of CHS have acquired specialized functional roles over the course of evolution. We conclude that recurrent gene duplication and subsequent differentiation is a major adaptive strategy in plant genome evolution.  相似文献   

15.
Gene duplication is a widespread phenomenon in genome evolution, and it has been proposed to serve as an engine of evolutionary innovation. In the present study, we performed the first comprehensive analysis of duplicate genes in the bovine genome. A total of 3131 putative duplicated gene pairs were identified, including 712 cattle-specific duplicate gene pairs unevenly distributed across the genome, which are significantly enriched for specific biological functions including immunity, growth, digestion, reproduction, embryonic development, inflammatory response, and defense response to bacterium. Around 97.1% (87.8%) of (cattle-specific) duplicate gene pairs were found to have distinct exon-intron structures. Analysis of gene expression by RNA-Seq and sequence divergence (synonymous or non-synonymous) revealed that expression divergence is correlated with sequence divergence, as has been previously observed in other species. This analysis also led to the identification of a subset of cattle-specific duplicate gene pairs exhibiting very high expression divergence. Interestingly, further investigation revealed a significant relationship between structural and expression divergence while controlling for the effect of synonymous sequence divergence. Together these results provide further insight into duplicate gene sequence and expression divergence in cattle, and their potential contributions to phenotypic divergence.  相似文献   

16.
17.
Schmid KJ  Nigro L  Aquadro CF  Tautz D 《Genetics》1999,153(4):1717-1729
We present a survey of nucleotide polymorphism of three novel, rapidly evolving genes in populations of Drosophila melanogaster and D. simulans. Levels of silent polymorphism are comparable to other loci, but the number of replacement polymorphisms is higher than that in most other genes surveyed in D. melanogaster and D. simulans. Tests of neutrality fail to reject neutral evolution with one exception. This concerns a gene located in a region of high recombination rate in D. simulans and in a region of low recombination rate in D. melanogaster, due to an inversion. In the latter case it shows a very low number of polymorphisms, presumably due to selective sweeps in the region. Patterns of nucleotide polymorphism suggest that most substitutions are neutral or nearly neutral and that weak (positive and purifying) selection plays a significant role in the evolution of these genes. At all three loci, purifying selection of slightly deleterious replacement mutations appears to be more efficient in D. simulans than in D. melanogaster, presumably due to different effective population sizes. Our analysis suggests that current knowledge about genome-wide patterns of nucleotide polymorphism is far from complete with respect to the types and range of nucleotide substitutions and that further analysis of differences between local populations will be required to understand the forces more completely. We note that rapidly diverging and nearly neutrally evolving genes cannot be expected only in the genome of Drosophila, but are likely to occur in large numbers also in other organisms and that their function and evolution are little understood so far.  相似文献   

18.
The recent sequencing of several eukaryotic genomes has generated considerable interest in the study of gene duplication events. The classical model of duplicate gene evolution is that recurrent mutation ultimately results in one copy becoming a pseudogene, and only rarely will a beneficial new function evolve. Here, we study divergence between coding sequence duplications in Drosophila melanogaster as a function of the linkage relationship between paralogs. The mean K(a)/K(s) between all duplicates in the D. melanogaster genome is 0.2803, indicating that purifying selection is maintaining the structure of duplicate coding sequences. However, the mean K(a)/K(s) between duplicates that are both on the X chromosome is 0.4701, significantly higher than the genome average. Further, the distribution of K(a)/K(s) for these X-linked duplicates is significantly shifted toward higher values when compared with the distributions for paralogs in other linkage relationships. Two models of molecular evolution provide qualitative explanations of these observations-relaxation of selective pressure on the duplicate copies and, more likely, positive selection on recessive adaptations. We also show that there is an excess of X-linked duplicates with low K(s), suggesting a larger proportion of relatively young duplicates on the D. melanogaster X chromosome relative to autosomes.  相似文献   

19.
Antagonistic host-parasite interactions can drive rapid adaptive evolution in genes of the immune system, and such arms races may be an important force shaping polymorphism in the genome. The RNA interference pathway gene Argonaute-2 (AGO2) is a key component of antiviral defense in Drosophila, and we have previously shown that genes in this pathway experience unusually high rates of adaptive substitution. Here we study patterns of genetic variation in a 100-kbp region around AGO2 in three different species of Drosophila. Our data suggest that recent independent selective sweeps in AGO2 have reduced genetic variation across a region of more than 50 kbp in Drosophila melanogaster, D. simulans, and D. yakuba, and we estimate that selection has fixed adaptive substitutions in this gene every 30-100 thousand years. The strongest signal of recent selection is evident in D. simulans, where we estimate that the most recent selective sweep involved an allele with a selective advantage of the order of 0.5-1% and occurred roughly 13-60 Kya. To evaluate the potential consequences of the recent substitutions on the structure and function of AGO2, we used fold-recognition and homology-based modeling to derive a structural model for the Drosophila protein, and this suggests that recent substitutions in D. simulans are overrepresented at the protein surface. In summary, our results show that selection by parasites can consistently target the same genes in multiple species, resulting in areas of the genome that have markedly reduced genetic diversity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号