首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many Gram-negative bacterial pathogens employ a contact-dependent (type III) secretion system to deliver effector proteins into the cytosol of animal or plant cells. Collectively, these effectors enable the bacteria to evade the immune response of the infected organism by modulating host-cell functions. YopM, a member of the leucine-rich repeat protein superfamily, is an effector produced by the bubonic plague bacterium, Yersinia pestis, that is essential for virulence. Here, we report crystal structures of YopM at 2.4 and 2.1 A resolution. Among all leucine-rich repeat family members whose atomic coordinates have been reported, the repeating unit of YopM has the least canonical secondary structure. In both crystals, four YopM monomers form a hollow cylinder with an inner diameter of 35 A. The domain that targets YopM for translocation into eukaryotic cells adopts a well-ordered, alpha-helical conformation that packs tightly against the proximal leucine-rich repeat module. A similar alpha-helical domain can be identified in virulence-associated leucine-rich repeat proteins produced by Salmonella typhimurium and Shigella flexneri, and in the conceptual translation products of several open reading frames in Y. pestis.  相似文献   

2.
鼠疫耶尔森菌外部蛋白E(YopE)是鼠疫耶尔森菌的6种分泌蛋白之一,主要通过其144位的”精氨酸手指”结构与细胞膜耦联蛋白RhoGTP酶相互作用发挥功能.本文构建YopE及其144位突变体YopE(R144A)的可诱导表达系统,并优化了诱导条件. 用该系统结合流式细胞技术检测YopE和YopE(R144A)对细胞凋亡、细胞周期和细胞活性氧(ROS)水平的影响.结果显示:YopE(R144A)促进HeLa细胞凋亡|使G0/G1期细胞比例上升,G2/M期细胞比例下降;随着YopE(R144A)表达量增加,p21蛋白的表达量也增加| YopE(R144A)也能抑制细胞ROS的产生.研究结果提示,YopE在细胞内可能存在新的致病靶点.  相似文献   

3.
Pathogenic Yersinia species employ type III machines to target effector Yops into the cytosol of eukaryotic cells. Yersinia tyeA mutants are thought to be defective in the targeting of YopE and YopH without affecting the injection of YopM, YopN, YopO, YopP, and YopT into the cytosol of eukaryotic cells. One model suggests that TyeA may form a tether between YopN (LcrE) and YopD on the bacterial surface, a structure that may translocate YopE and YopH across the plasma membrane of eukaryotic cells (M. Iriarte, M. P. Sory, A. Boland, A. P. Boyd, S. D. Mills, I. Lambermont, and G. R. Cornelis, EMBO J. 17:1907-1918, 1998). We have examined the injection of Yop proteins by tyeA mutant yersiniae with the digitonin fractionation technique. We find that tyeA mutant yersiniae not only secreted YopE, YopH, YopM, and YopN into the extracellular medium but also targeted these polypeptides into the cytosol of HeLa cells. Protease protection, cell fractionation, and affinity purification experiments suggest that TyeA is located intracellularly and binds to YopN or YopD. We propose a model whereby TyeA functions as a negative regulator of the type III targeting pathway in the cytoplasm of yersiniae, presumably by preventing the export of YopN.  相似文献   

4.
Yersinia pestis, the causative agent of plague, exports a set of virulence proteins called Yops upon contact with eukaryotic cells. A subset of these Yops is translocated directly into the cytosol of host cells. In this study, a novel protein tag-based reporter system is used to measure the translocation of Yops into cultured eukaryotic cells. The reporter system uses a small bipartite phosphorylatable peptide tag, termed the Elk tag. Translocation of an Elk-tagged protein into eukaryotic cells results in host cell protein kinase-dependent phosphorylation of the tag at a specific serine residue, which can subsequently be detected with phosphospecific antibodies. The YopN, TyeA, SycN, YscB and LcrG proteins function to prevent Yop secretion before host cell contact. The role of these proteins was investigated in the translocation of Elk-tagged YopE (YopE129-Elk) and YopN (YopN293-Elk) into HeLa cells. Y. pestis yopN, tyeA, sycN and yscB deletion mutants showed reduced levels of YopE129-Elk phosphorylation compared with the parent strain, indicating that these mutants translocate reduced amounts of YopE. We also demonstrate that YopN293-Elk is translocated into HeLa cells and that this process is more efficient in a Yersinia yop polymutant strain lacking the six translocated effector Yops. Y. pestis sycN and yscB mutants translocated reduced amounts of YopN293-Elk; however, tyeA and lcrG mutants translocated higher amounts of YopN293-Elk compared with the parent strain. These data suggest that TyeA and LcrG function to suppress the secretion of YopN before host cell contact, whereas SycN and YscB facilitate YopN secretion and subsequent translocation.  相似文献   

5.
The Yersinia Yop virulon is an anti-host system made up of four elements: (i) a type III secretion system called Ysc; (ii) a system designed to deliver bacterial proteins into eukaryotic target cells (YopB, YopD); (iii) a control element (YopN); and (iv) a set of intracellularly delivered proteins designed to disarm these cells or disrupt their communications (YopE, YopH and possibly others). YopM, another Yop protein, binds thrombin and is thus presumed to act as an extracellular effector. Here, we analyzed YopM from Y.enterocolitica and we wondered whether it could also be delivered inside eukaryotic cells. To answer this question we applied the Yop-Cya reporter strategy. Hybrids made of 141 or 100 N-terminal residues of YopM fused to Cya were delivered inside PU5-1.8 macrophages by recombinant Y.enterocolitica strains. YopB and YopD were required as translocators. Leakage of the reporters into the macrophage culture supernatant during the bacterial infection increased strongly when YopN was missing, showing that YopN is involved in the control of delivery of YopM inside eukaryotic cells. YopN itself was not delivered into the macrophages. In conclusion, YopM is translocated inside the eukaryotic cells and its physiopathological role should be revised or completed.  相似文献   

6.
Pathogenic Yersiniae adhere to and kill macrophages by targeting some of their Yop proteins into the eukaryotic cytosol. There is debate about whether YopE targeting proceeds as a direct translocation of polypeptide between cells or in two distinct steps, each requiring specific signals for YopE secretion across the bacterial envelope and for translocation into the eukaryotic cytosol. Here, we used the selective solubilization of the eukaryotic plasma membrane with digitonin to measure Yop targeting during Yersinia infections of HeLa cells. YopE, YopH, YopM and YopN were found in the eukaryotic cytosol but not in the extracellular medium. When bound to SycE chaperone in the Yersinia cytoplasm, YopE residues 1–100 are necessary and sufficient for the targeting of hybrid neomycin phosphotransferase. Electron microscopic analysis failed to detect an extracellular intermediate of YopE targeting, suggesting a one-step translocation mechanism.  相似文献   

7.
Introduction of anti-host factors into eukaryotic cells by extracellular bacteria is a strategy evolved by several Gram-negative pathogens. In these pathogens, the transport of virulence proteins across the bacterial membranes is governed by closely related type III secretion systems. For pathogenic Yersinia , the protein transport across the eukaryotic cell membrane occurs by a polarized mechanism requiring two secreted proteins, YopB and YopD. YopB was recently shown to induce the formation of a pore in the eukaryotic cell membrane, and through this pore, translocation of Yop effectors is believed to occur (Håkansson et al ., 1996b). We have previously shown that YopK of Yersinia pseudotuberculosis is required for the development of a systemic infection in mice. Here, we have analysed the role of YopK in the virulence process in more detail. A yopK -mutant strain was found to induce a more rapid YopE-mediated cytotoxic response in HeLa cells as well as in MDCK-1 cells compared to the wild-type strain. We found that this was the result of a cell-contact-dependent increase in translocation of YopE into HeLa cells. In contrast, overexpression of YopK resulted in impaired translocation. In addition, we found that YopK also influenced the YopB-dependent lytic effect on sheep erythrocytes as well as on HeLa cells. A yopK -mutant strain showed a higher lytic activity and the induced pore was larger compared to the corresponding wild-type strain, whereas a strain overexpressing YopK reduced the lytic activity and the apparent pore size was smaller. The secreted YopK protein was found not to be translocated but, similar to YopB, localized to cell-associated bacteria during infection of HeLa cells. Based on these results, we propose a model where YopK controls the translocation of Yop effectors into eukaryotic cells.  相似文献   

8.
Extracellular Yersinia disarm the immune system of their host by injecting effector Yop proteins into the cytosol of target cells. Five effectors have been described: YopE, YopH, YpkA/YopO, YopP and YopM. Delivery of these effectors by Yersinia adhering at the cell surface requires other Yops (translocators) including YopB. Effector and translocator Yops are secreted by the type III Ysc secretion apparatus, and some Yops also need a specific cytosolic chaperone, called Syc. In this paper, we describe a new Yop, which we have called YopT (35.5 kDa). Its secretion required an intact Ysc apparatus and SycT (15.0 kDa, pI 4.4), a new chaperone resembling SycE. Infection of macrophages with a Yersinia , producing a hybrid YopT–adenylate cyclase, led to the accumulation of intracellular cAMP, indicating that YopT is delivered into the cytosol of eukaryotic cells. Infection of HeLa cells with a mutant strain devoid of the five known Yop effectors (ΔHOPEM strain) but producing YopT resulted in the alteration of the cell cytoskeleton and the disruption of the actin filament structure. This cytotoxic effect was caused by YopT and dependent on YopB. YopT is thus a new effector Yop and a new bacterial toxin affecting the cytoskeleton of eukaryotic cells.  相似文献   

9.
Extracellular Yersinia spp. disarm the immune system by injecting the effector Yersinia outer proteins (Yops) into the target cell. Yop secretion is triggered by contact with eukaryotic cells or by Ca2+ chelation. Two proteins, YopN and LcrG, are known to be involved in Yop-secretion control. Here we describe TyeA, a third protein involved in the control of Yop release. Like YopN, TyeA is localized at the bacterial surface. A tyeA knock-out mutant secreted Yops in the presence of Ca2+ and in the absence of eukaryotic cells. Unlike a yopN null mutant, the tyeA mutant was defective for translocation of YopE and YopH, but not YopM, YopO and YopP, into eukaryotic cells. This is the first observation suggesting that Yop effectors can be divided into two sets for delivery into eukaryotic cells. TyeA was found to interact with the translocator YopD and with residues 242-293 of YopN. In contrast with a yopN null mutant, a yopNDelta248-272 mutant was also unable to translocate YopE and YopH. Our results suggest that TyeA forms part of the translocation-control apparatus together with YopD and YopN, and that the interaction of these proteins is required for selective translocation of Yops inside eukaryotic cells.  相似文献   

10.
Pathogenic Yersinia contain a virulence plasmid that encodes genes for intracellular effectors, which neutralize the host immune response. One effector, YopM, is necessary for Yersinia virulence, but its function in host cells is unknown. To identify potential cellular pathways affected by YopM, proteins that co-immunoprecipitate with YopM in mammalian cells were isolated and identified by mass spectrometry. Results demonstrate that two kinases, protein kinase C-like 2 (PRK2) and ribosomal S6 protein kinase 1 (RSK1), interact directly with YopM. These two kinases associate only when YopM is present, and expression of YopM in cells stimulates the activity of both kinases. RSK1 is activated directly by interaction with YopM, and RSK1 kinase activity is required for YopM-stimulated PRK2 activity. YopM activation of RSK1 occurs independently of the actions of YopJ on the MAPK pathway. YopM is also required for Yersinia-induced changes in RSK1 mobility in infected macrophage cells. These results identify the first intracellular targets of YopM and suggest YopM acts to stimulate the activity of PRK2 and RSK1.  相似文献   

11.
12.
Virulent Yersinia species cause systemic infections in rodents, and Y. pestis is highly pathogenic for humans. Pseudomonas aeruginosa , on the other hand, is an opportunistic pathogen, which normally infects only compromised individuals. Surprisingly, these pathogens both encode highly related contact-dependent secretion systems for the targeting of toxins into eukaryotic cells. In Yersinia , YopB and YopD direct the translocation of the secreted Yop effectors across the target cell membrane. In this study, we have analysed the function of the YopB and YopD homologues, PopB and PopD, encoded by P. aeruginosa . Expression of the pcrGVHpopBD operon in defined translocation-deficient mutants ( yopB / yopD ) of Yersinia resulted in complete complementation of the cell contact-dependent, YopE-induced cytotoxicity of Y. pseudotuberculosis on HeLa cells. We demonstrated that the complementation fully restored the ability of Y. pseudotuberculosis to translocate the effector molecules YopE and YopH into the HeLa cells. Similar to YopB, PopB induced a lytic effect on infected erythrocytes. The lytic activity induced by PopB could be prevented if the erythrocytes were infected in the presence of sugars larger than 3 nm in diameter, indicating that PopB induced a pore of similar size compared with that induced by YopB. Our findings show that the contact-dependent toxin-targeting mechanisms of Y. pseudotuberculosis and P. aeruginosa are conserved at the molecular level and that the translocator proteins are functionally interchangeable. Based on these similarities, we suggest that the translocation of toxins such as ExoS, ExoT and ExoU by P. aeruginosa across the eukaryotic cell membrane occurs via a pore induced by PopB.  相似文献   

13.
In Yersinia pestis KIM, there are 11 Yops (yersinial outer membrane proteins) encoded by the low-Ca2+ response virulence plasmid pCD1. Only Yops M and N are found in easily detectable amounts in the culture medium. In this study, we located and characterized the yopM gene to obtain clues about its role in the virulence of Y. pestis. Rabbit antibody was raised against Yops M and H, copurified from the supernatant of Y. pseudotuberculosis 43(pGW600, pCD1 yopE::Mu dI1[Apr lac]). This antiserum was adsorbed with an Escherichia coli clone that strongly expressed YopH. The resulting YopM-specific antibody was used to screen a HindIII library of pCD1. HindIII-F and several subclones from it expressed YopM in E. coli minicells. A DNA fragment of 1.39 kilobases from HindIII-F was sequenced and found to contain a 367-amino-acid open reading frame capable of encoding a protein with molecular mass (41,566 daltons) and isoelectric point (4.06) similar to those of YopM. The +1 site of the yopM gene was determined by primer extension. The DNA sequence contained repeating structures: 11 pairs of exact direct repeats, two exact inverted repeats, and three palindromes, ranging from 10 to 42 bases in size. One consensus 14-amino-acid sequence was repeated six times in the predicted protein sequence. The YopM sequence shares some significant homology with the von Willebrand factor- and thrombin-binding domain of the alpha chain of human platelet membrane glycoprotein Ib. These findings suggested a testable hypothesis for the function of YopM.  相似文献   

14.
Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. In this paper, we show that LcrG can bind HeLa cells, and we analyse the role of proteoglycans in this phenomenon. Treatment of the HeLa cells with heparinase I, but not chondroitinase ABC, led to inhibition of binding. Competition assays indicated that heparin and dextran sulphate strongly inhibited binding, but that other glycosaminoglycans did not. This demonstrated that binding of HeLa cells to purified LcrG is caused by heparan sulphate proteoglycans. LcrG could bind directly to heparin-agarose beads and, in agreement with these results, analysis of the protein sequence of Yersinia enterocolitica LcrG revealed heparin-binding motifs. In vitro production and secretion by Y . enterocolitica of the Yops was unaffected by the addition of heparin. However, the addition of exogenous heparin decreased the level of YopE–Cya translocation into HeLa cells. A similar decrease was seen with dextran sulphate, whereas the other glycosaminoglycans tested had no significant effect. Translocation was also decreased by treatment of HeLa cells with heparinitase, but not with chondroitinase. Thus, heparan sulphate proteoglycans have an important role to play in translocation. The interaction between LcrG and heparan sulphate anchored at the surface of HeLa cells could be a signal triggering deployment of the Yop translocation machinery. This is the first report of a eukaryotic receptor interacting with the type III secretion and associated translocation machinery of Yersinia or of other bacteria.  相似文献   

15.
Exoenzyme S (ExoS) is an ADP-ribosyltransferase secreted by the opportunistic pathogen Pseudomonas aeruginosa . The amino-terminal half of ExoS exhibits homology to the YopE cytotoxin of pathogenic Yersinia . Recently, YopE was found to be translocated into the host cell by a bacteria–cell contact-dependent mechanism involving the ysc -encoded type III secretion system. By using an approach in which exoS was expressed in different strains of Yersinia , including secretion and translocation mutants, we could demonstrate that ExoS was secreted and translocated into HeLa cells by a similar mechanism to that described previously for YopE. Similarly to YopE, the presence of ExoS in the host cell elicited a cytotoxic response, correlating with disruption of the actin microfilament structure. A similar cytotoxic response was also induced by a mutated form of ExoS with a more than 2000-fold reduced ADP-ribosyltransferase activity. However, the enzymatically active ExoS elicited a more definite rounding up of the HeLa cells, which also correlated with decreased viability of the cells after prolonged infection compared with cells infected with strains expressing mutated ExoS or YopE. This suggests that ExoS can act through two different mechanisms on the host cell. The expression of ExoS by Yersinia also mediated an anti-phagocytic effect on macrophages. In addition, we present evidence that extracellularly located P. aeruginosa is able to target ExoS into eukaryotic cells. Taken together, our data suggest that P. aeruginosa , by analogy with Yersinia , targets virulence proteins into the eukaryotic cytosol via a type III secretion-dependent mechanism as part of an anti-phagocytic strategy.  相似文献   

16.
为获得含有鼠疫F1和V抗原编码基因以及人tPA信号肽基因的重组质粒tPA-pVAX1/F1-V,并测定其诱导特异性免疫应答的能力, 用PCR扩增鼠疫菌F1和V编码基因,分别与pGEM-T连接测序,构建pVAX1/F1-V融合重组质粒.PCR扩增tPA信号肽片段并将其插入到F1-V的上游,构建tPA-pVAX1/F1-V融合重组质粒;转染COS-7细胞,Western blot法鉴定目的蛋白的表达.重组质粒tPA-pVAX1/F1-V加GM-CSF佐剂免疫BALB/c小鼠,观察免疫效果.400个LD50强毒鼠疫菌皮下攻毒观察保护率.结果表明,tPA-pVAX1/F1-V在COS-7细胞中表达;免疫鼠体内产生特异性抗体;抗体亚型分析、细胞因子等指标的测定表明,所构建DNA疫苗以诱发Th1型免疫为主;攻毒保护率达90%.结果提示,已成功构建F1-V融合蛋白真核表达载体tPA-pVAX1/F1-V,且具有诱导特异性细胞免疫和体液免疫应答的能力, 对强毒鼠疫菌皮下攻毒有一定的保护效力,为鼠疫菌新型疫苗研制奠定了基础.  相似文献   

17.
The role of proteases in pathogenesis is well established for several microorganisms but has not been described for Yersinia enterocolitica. Previously, we identified a gene, hreP, which showed significant similarity to proteases in a screen for chromosomal genes of Y. enterocolitica that were exclusively expressed during an infection of mice. We cloned this gene by chromosome capture and subsequently determined its nucleotide sequence. Like inv, the gene encoding the invasin protein of Y. enterocolitica, hreP is located in a cluster of flagellum biosynthesis and chemotaxis genes. The genomic organization of this chromosomal region is different in Escherichia coli, Salmonella, and Yersinia pestis than in Y. enterocolitica. Analysis of the distribution of hreP between different Yersinia isolates and the relatively low G+C content of the gene suggests acquisition by horizontal gene transfer. Sequence analysis also revealed that HreP belongs to a family of eukaryotic subtilisin/kexin-like proteases. Together with the calcium-dependent protease PrcA of Anabaena variabilis, HreP forms a new subfamily of bacterial subtilisin/kexin-like proteases which might have originated from a common eukaryotic ancestor. Like other proteases of this family, HreP is expressed with an N-terminal prosequence. Expression of an HreP-His(6) tag fusion protein in E. coli revealed that HreP undergoes autocatalytic processing at a consensus cleavage site of subtilisin/kexin-like proteases, thereby releasing the proprotein.  相似文献   

18.
The Yersinia pestis low-Ca2+ response stimulon is responsible for the temperature- and Ca(2+)-regulated expression and secretion of plasmid pCD1-encoded antihost proteins (V antigen and Yops). We have previously shown that lcrD and yscR encode proteins that are essential for high-level expression and secretion of V antigen and Yops at 37 degrees C in the absence of Ca2+. In this study, we constructed and characterized mutants with in-frame deletions in yscC, yscD, and yscG of the ysc operon that contains yscA through yscM. All three mutants lost the Ca2+ requirement for growth at 37 degrees c, expressed only basal levels of V antigen and YopM in the presence or absence of Ca2+, and failed to secrete these proteins to the culture supernatant. Overproduction of YopM in these mutants failed to restore YopM export, showing that the mutations had a direct effect on secretion. The protein products of yscC, yscD, and yscG were identified and localized by immunoblot analysis. YscC was localized to the outer membrane of Y. pestis, while YscD was found in the inner membrane. YscG was distributed equally between the soluble and total membrane fractions. Double mutants were characterized to assess where YscC and YscD act in low-Ca2+ response (LCR) regulation. lcrH::cat-yscC and lcrH::cat-yscD double mutants were constitutively induced for expression of V antigen and YopM; however, these proteins were not exported. This finding showed that the ysc mutations did not directly decrease induction of LCR stimulon genes. In contrast, lcrE-yscC, lcrG-yscC, lcrE-yscD, and lcrG-yscD double mutants as well as an lcrE-lcrD double mutant expressed only basal levels of V antigen and YopM and also failed to secrete these proteins to the culture supernatant. These results indicated that a functional LCR secretion system was necessary for high-level expression of LCR stimulon proteins in the lcrE and lcrG mutants but not in an lcrH::cat mutant. Possible models of regulation which incorporate these results are discussed.  相似文献   

19.
20.
Although very little, if any, beta-galactosidase activity is detected in Yersinia pestis by a standard Miller assay, we found that Y. pestis KIM6+ cells formed blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). Searches of the Y. pestis genome databases revealed the presence of noncontiguous sequences highly homologous to Escherichia coli lacZ, lacY, and lacI. Yersinia pestis lacZ is predicted to encode a 1060 amino-acid protein with 62% identity and 72% similarity to beta-galactosidase from E. coli. A deletion in the Y. pestis lacZ gene caused the formation of white colonies on X-gal-containing plates and beta-galactosidase activity was at background levels in the KIM6+lacZ mutant, while the complemented strain expressed about 190 Miller units. The Y. pestis lacZ promoter was not regulated by isopropylthiogalactoside or glucose. Finally, uptake of lactose by Y. pestis may be impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号