首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrophobic substrate-selective domain of the resistance-nodulation-division-type xenobiotic transporter of Pseudomonas aeruginosa was assigned based on the different organic-solvent selectivities of MexB and MexY. The MexB-MexY hybrid protein consisting of two large periplasmic domains of MexB and the transmembrane domains of MexY showed MexB-type organic solvent selectivity. The results imply that the resistance-nodulation-division-type xenobiotic transporters recognize hydrophobic substrates such as organic solvents by their periplasmic domains and expel them to the external milieu. This is an elegant way to protect the cytoplasmic membrane from membrane-deteriorating agents.  相似文献   

2.
The MexA,B-OprM efflux pump assembly of Pseudomonas aeruginosa consists of two inner membrane proteins and one outer membrane protein. The cytoplasmic membrane protein, MexB, appears to function as the xenobiotic-exporting subunit, whereas the MexA and OprM proteins are supposed to function as the membrane fusion protein and the outer membrane channel protein, respectively. Computer-aided hydropathy analyses of MexB predicted the presence of up to 17 potential transmembrane segments. To verify the prediction, we analyzed the membrane topology of MexB using the alkaline phosphatase gene fusion method. We obtained the following unique characteristics. MexB bears 12 membrane spanning segments leaving both the amino and carboxyl termini in the cytoplasmic side of the inner membrane. Both the first and fourth periplasmic loops had very long hydrophilic domains containing 311 and 314 amino acid residues, respectively. This fact suggests that these loops may interact with other pump subunits, such as the membrane fusion protein MexA and the outer membrane protein OprM. Alignment of the amino- and the carboxyl-terminal halves of MexB showed a 30% homology and transmembrane segments 1, 2, 3, 4, 5, and 6 could be overlaid with the segments 7, 8, 9, 10, 11, and 12, respectively. This result suggested that the MexB has a 2-fold repeat that strengthen the experimentally determined topology model. This paper reports the structure of the pump subunit, MexB, of the MexA,B-OprM efflux pump assembly. This is the first time to verify the topology of the resistant-nodulation-division efflux pump protein.  相似文献   

3.
The integral inner membrane resistance-nodulation-division (RND) components of three-component RND-membrane fusion protein-outer membrane factor multidrug efflux systems define the substrate selectivity of these efflux systems. To gain a better understanding of what regions of these proteins are important for substrate recognition, a plasmid-borne mexB gene encoding the RND component of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa was mutagenized in vitro by using hydroxylamine and mutations compromising the MexB contribution to antibiotic resistance identified in a DeltamexB strain. Of 100 mutants that expressed wild-type levels of MexB and showed increased susceptibility to one or more of carbenicillin, chloramphenicol, nalidixic acid, and novobiocin, the mexB genes of a representative 46 were sequenced, and 19 unique single mutations were identified. While the majority of mutations occurred within the large periplasmic loops between transmembrane segment 1 (TMS-1) and TMS-2 and between TMS-7 and TMS-8 of MexB, mutations were seen in the TMSs and in other periplasmic as well as cytoplasmic loops. By threading the MexB amino acid sequence through the crystal structure of the homologous RND transporter from Escherichia coli, AcrB, a three-dimensional model of a MexB trimer was obtained and the mutations were mapped to it. Unexpectedly, most mutations mapped to regions of MexB predicted to be involved in trimerization or interaction with MexA rather than to regions expected to contribute to substrate recognition. Intragenic second-site suppressor mutations that restored the activity of the G220S mutant version of MexB, which was compromised for resistance to all tested MexAB-OprM antimicrobial substrates, were recovered and mapped to the apparently distal portion of MexB that is implicated in OprM interaction. As the G220S mutation likely impacted trimerization, it appears that either proper assembly of the MexB trimer is necessary for OprM interaction or OprM association with an unstable MexB trimer might stabilize it, thereby restoring activity.  相似文献   

4.
The tripartite xenobiotic-antibiotic transporter of Pseudomonas aeruginosa consists of the inner membrane transporter (e.g., MexB, MexY), the periplasmic membrane-fusion-protein (e.g., MexA, MexX), and the outer membrane channel protein (e.g., OprM). These subunits were assumed to assemble into a transporter unit during export of the substrates. However, subunit interaction and their specificity in native form remained to be elucidated. To address these important questions, we analyzed the role of the individual subunits for the assembly of MexAB-OprM by pull-down assay tagging only one of the subunits. We found stable MexA-MexB-OprM complex without chemical cross-linking that withstand all purification procedures. Results of bi-partite interactions analysis showed tight association between MexA and OprM in the absence of MexB, whereas the expression systems lacking MexA failed to co-purify MexB or OprM. None of the heterologous subunit combinations such as MexA+MexY(his)+OprM and MexX+MexB(his)+OprM showed interaction. These results implied that the membrane fusion protein is central to the tripartite xenobiotic transporter assembly.  相似文献   

5.
Many multidrug transporters from gram-negative bacteria belong to the resistance-nodulation-cell division (RND) superfamily of transporters. RND-type multidrug transporters have an extremely broad substrate specificity and protect bacterial cells from the actions of antibiotics on both sides of the cytoplasmic membrane. They usually function as three-component assemblies spanning the outer and cytoplasmic membranes and the periplasmic space of gram-negative bacteria. The structural determinants of RND transporters responsible for multidrug recognition and complex assembly remain unknown. We constructed chimeric RND transporters composed of N-terminal residues of AcrB and C-terminal residues of MexB, the major RND-type transporters from Escherichia coli and Pseudomonas aeruginosa, respectively. The assembly of complexes and multidrug efflux activities of chimeric transporters were determined by coexpression of hybrid genes either with AcrA, the periplasmic component of the AcrAB transporter from E. coli, or with MexA and OprM, the accessory proteins of the MexAB-OprM pump from P. aeruginosa. We found that the specificity of interaction with the corresponding periplasmic component is encoded in the T60-V612 region of transporters. Our results also suggest that the large periplasmic loops of RND-type transporters are involved in multidrug recognition and efflux.  相似文献   

6.
Multidrug efflux pumps contribute to multiple antibiotic resistance in Pseudomonas aeruginosa. Pump expression usually has been quantified by Western blotting. Quantitative real-time polymerase chain reaction has been developed to measure mRNA expression for genes of interest. Whether this method correlates with pump protein quantities is unclear. We devised a real-time PCR for mRNA expression of MexAB-OprM and MexXY-OprM multidrug efflux pumps. In laboratory strains differing in MexB and MexY expression and in several clinical isolates, protein and mRNA expression correlated well. Quantitative real-time PCR should be a useful alternative in quantitating expression of multidrug efflux pumps by P. aeruginosa isolates in clinical laboratories.  相似文献   

7.
R Srikumar  X Z Li    K Poole 《Journal of bacteriology》1997,179(24):7875-7881
A major feature of the MexAB-OprM multidrug efflux pump which distinguishes it from the MexCD-OprJ and MexEF-OprN multidrug efflux systems in Pseudomonas aeruginosa is its ability to export a wide variety of beta-lactam antibiotics. Given the periplasmic location of their targets it is feasible that beta-lactams exit the cell via the outer membrane OprM without interaction with MexA and MexB, though the latter appear to be necessary for OprM function. To test this, chimeric MexAB-OprJ and MexCD-OprM efflux pumps were reconstituted in delta mexCD delta oprM and delta mexAB delta oprJ strains, respectively, and the influence of the exchange of outer membrane components on substrate (i.e., beta-lactam) specificity was assessed. Both chimeric pumps were active in antibiotic efflux, as evidenced by their contributions to resistance to a variety of antimicrobial agents, although there was no change in resistance profiles relative to the native pumps, indicating that OprM is not the determining factor for the beta-lactam specificity of MexAB-OprM. Thus, one or both of inner membrane-associated proteins MexA and MexB are responsible for drug recognition, including recognition of beta-lactams.  相似文献   

8.
Tripartite efflux systems of Gram-negative bacteria that contain an inner membrane transporter belonging to the resistance nodulation division (RND) superfamily can extrude a large variety of structurally diverse compounds. To gain an insight into the molecular mechanisms of substrate recognition by these multidrug resistance (MDR) transporters, we isolated spontaneous mutations that altered the substrate specificity of the MexCD-OprJ pump from Pseudomonas aeruginosa. These mutations enabled the pump to extrude the normally non-transported beta-lactam antibiotic carbenicillin. All amino acid substitutions were mapped to the large periplasmic loops (LPLs) of the RND proper, MexD. Q34K, E89K, A292V and P328L were found in the first LPL, located between transmembrane domains (TMD) 1 and 2, whereas F608S and N673K were contained in the second LPL, located between TMD7 and TMD8. These mutations also had a substantial impact on the MexCD-OprJ-mediated transport of numerous other substrates. Subsequent replacement of amino acid residues identified above by cysteines rendered MexCD-OprJ susceptible to inhibition by a thiol-reactive agent, MIANS. Interestingly, MIANS inhibited the transport of some (pyronin, EtBr) but not other (ANS, Leu-Nap) substrates of the pump. Our results suggest that the precise structure of the periplasmic loops of MexD determines the rate of transport of individual substrates. These results are consistent with the hypothesis that, in the case of RND transporters, the LPLs are directly implicated in substrate recognition and contain multiple sites of interaction for various structurally diverse compounds.  相似文献   

9.
Eda S  Yoneyama H  Nakae T 《Biochemistry》2003,42(23):7238-7244
The MexA-MexB-OprM efflux pump exports structurally and functionally diverse xenobiotics and confers multi-drug resistance on Pseudomonas aeruginosa cells. The MexB transporter traverses the inner membrane twelve times, bears two large periplasmic domains and has two homologous tandem repeats. To test whether two homologous halves of MexB function independently or interdependently, the protein was divided medially into two halves, each consisting of six amino- and carboxyl-proximal transmembrane segments. When two halves of MexB were coexpressed from independent open reading frames, the cells lacking chromosomal mexB exhibited restored antibiotic resistance at a level close to that in the cells producing a full-length MexB. In contrast, MexB protein containing either an amino- or carboxyl-half fragment failed to transport antibiotics. To test whether the amino- and carboxyl-proximal halves were present in a complex, we purified the histidine-tagged carboxyl-proximal half molecule using nickel-chelate chromatography from the cells that coexpressed two halves. The results showed that the nonhistidine-tagged amino-proximal half was co-purified with the carboxyl-proximal half, thereby indicating that the amino-proximal half fragment was tightly associated with the carboxyl-proximal half molecule. These findings suggest that the presence of both amino- and carboxyl-halves of MexB in a complex is essential for transport activity.  相似文献   

10.
The outer membrane subunit OprM of the multicomponent efflux pump of Pseudomonas aeruginosa has been assumed to form a transmembrane xenobiotic exit channel across the outer membrane. We challenged this hypothesis to clarify the underlying ambiguity by manipulating the amino-terminal signal sequence of the OprM protein of the MexAB-OprM efflux pump in P. aeruginosa. [(3)H]Palmitate uptake experiments revealed that OprM is a lipoprotein. The following lines of evidence unequivocally established that the OprM protein functioned at the periplasmic space. (i) The OprM protein, in which a signal sequence including Cys-18 was replaced with that of periplasmic azurin, appeared in the periplasmic space but not in the outer membrane fraction, and the protein fully functioned as the pump subunit. (ii) The hybrid OprM containing the N-terminal transmembrane segment of the inner membrane protein, MexF, appeared exclusively in the inner membrane fraction. The hybrid protein containing 186 or 331 amino acid residues of MexF was fully active for the antibiotic extrusion, but a 42-residue protein was totally inactive. (iii) The mutant OprM, in which the N-terminal cysteine residue was replaced with another amino acid, appeared unmodified with fatty acid and was fractionated in both the periplasmic space and the inner membrane fraction but not in the outer membrane fraction. The Cys-18-modified OprM functioned for the antibiotic extrusion indistinguishably from that in the wild-type strain. We concluded, based on these results, that the OprM protein was anchored in the outer membrane via fatty acid(s) attached to the N-terminal cysteine residue and that the entire polypeptide moiety was exposed to the periplasmic space.  相似文献   

11.
Drug efflux pumps such as MexAB-OprM from Pseudomonas aeruginosa confer resistance to a wide range of chemically different compounds. Within the tripartite assembly, the inner membrane protein MexB is mainly responsible for substrate recognition. Recently, considerable advances have been made in elucidating the drug efflux pathway through the large periplasmic domains of resistance-nodulation-division (RND) transporters. However, little is known about the role of amino acids in other parts of the protein. We have investigated the role of two conserved phenylalanine residues that are aligned around the cytoplasmic side of the central cavity of MexB. The two conserved phenylalanine residues have been mutated to alanine residues (FAFA MexB). The interaction of the wild-type and mutant proteins with a variety of drugs from different classes was investigated by assays of cytotoxicity and drug transport. The FAFA mutation affected the efflux of compounds that have targets inside the cell, but antibiotics that act on cell wall synthesis and membrane probes were unaffected. Combined, our results indicate the presence of a hitherto unidentified cytoplasmic-binding site in RND drug transporters and enhance our understanding of the molecular mechanisms that govern drug resistance in Gram-negative pathogens.  相似文献   

12.
The MexAB-OprM efflux pump of Pseudomonas aeruginosa is central to multidrug resistance of this organism, which infects immunocompromised hospital patients. The MexA, MexB, and OprM subunits were assumed to function as the membrane fusion protein, the body of the transporter, and the outer membrane channel protein, respectively. For better understanding of this important xenobiotic transporter, we show the x-ray crystallographic structure of MexA at a resolution of 2.40 A. The global MexA structure showed unforeseen new features with a spiral assembly of six and seven protomers that were joined together at one end by a pseudo 2-fold image. The protomer showed a new protein structure with a tandem arrangement consisting of at least three domains and presumably one more. The rod domain had a long hairpin of twisted coiled-coil that extended to one end. The second domain adjacent to the rod alpha-helical domain was globular and constructed by a cluster of eight short beta-sheets. The third domain located distal to the alpha-helical rod was globular and composed of seven short beta-sheets and one short alpha-helix. The 13-mer was shaped like a woven rattan cylinder with a large internal tubular space and widely opened flared ends. The 6-mer and 7-mer had a funnel-like structure consisting of a tubular rod at one side and a widely opened flared funnel top at the other side. Based on these results, we constructed a model of the MexAB-OprM pump assembly. The three pairs of MexA dimers interacted with the periplasmic alpha-barrel domain of OprM via the alpha-helical hairpin, the second domain interacted with both MexB and OprM at their contact site, and the third and disordered domains probably interacted with the distal domain of MexB. In this fashion, the MexA subunit connected MexB and OprM, indicating that MexA is the membrane bridge protein.  相似文献   

13.
The 2-hydroxycarboxylate transporter (2HCT) family of secondary transporters belongs to a much larger structural class of secondary transporters termed ST3 which contains about 2000 transporters in 32 families. The transporters of the 2HCT family are among the best studied in the class. Here we detect weak sequence similarity between the N- and C-terminal halves of the proteins using a sensitive method which uses a database containing the N- and C-terminal halves of all the sequences in ST3 and involves blast searches of each sequence in the database against the whole database. Unrelated families of secondary transporters of the same length and composition were used as controls. The sequence similarity involved major parts of the N- and C-terminal halves and not just a small stretch. The membrane topology of the homologous N- and C-terminal domains was deduced from the experimentally determined topology of the members of the 2HCT family. The domains consist of five transmembrane segments each and have opposite orientations in the membrane. The N terminus of the N-terminal domain is extracellular, while the N terminus of the C-terminal domain is cytoplasmic. The loops between the fourth and fifth transmembrane segment in each domain are well conserved throughout the class and contain a high fraction of residues with small side chains, Gly, Ala and Ser. Experimental work on the citrate transporter CitS in the 2HCT family indicates that the loops are re-entrant or pore loops. The re-entrant loops in the N- and C-terminal domains enter the membrane from opposite sides (trans-re-entrant loops). The combination of inverted membrane topology and trans-re-entrant loops represents a new fold for secondary transporters and resembles the structure of aquaporins and models proposed for Na+/Ca2+ exchangers.  相似文献   

14.
The tripartite efflux systems MexAB-OprM and MexCD-OprJ of Pseudomonas aeruginosa each display characteristic substrate specificity against a variety of antimicrobial agents. The chimeric efflux system MexC-MexB-OprJ/DeltaMexD constructed by exchange of MexD with MexB endowed the recombinant host the same resistance profile as MexAB-OprM rather than MexCD-OprJ. The change of substrate specificity was shown to be due to extrusion from the chimeric efflux system by cellular accumulation experiments using tetracycline, erythromycin, and ethidium bromide. Thus, we conclude that MexB and MexD are primary components of the efflux system responsible for sorting extrusion substrates.  相似文献   

15.
AcrAB-TolC from Escherichia coli is a multidrug efflux complex capable of transenvelope transport. In this complex, AcrA is a periplasmic membrane fusion protein that establishes a functional connection between the inner membrane transporter AcrB of the RND superfamily and the outer membrane channel TolC. To gain insight into the mechanism of the functional association between components of this complex, we replaced AcrB with its close homolog MexB from Pseudomonas aeruginosa. Surprisingly, we found that AcrA is promiscuous and can form a partially functional complex with MexB and TolC. The chimeric AcrA-MexB-TolC complex protected cells from sodium dodecyl sulfate, novobiocin, and ethidium bromide but failed with other known substrates of MexB. We next identified single and double mutations in AcrA and MexB that enabled the complete functional fit between AcrA, MexB, and TolC. Mutations in either the α-helical hairpin of AcrA making contact with TolC or the β-barrel domain lying on MexB improved the functional alignment between components of the complex. Our results suggest that three components of multidrug efflux pumps do not associate in an “all-or-nothing” fashion but accommodate a certain degree of flexibility. This flexibility in the association between components affects the transport efficiency of RND pumps.  相似文献   

16.
The Escherichia coli iron transport system via ferrichrome belongs to the group of ATP-dependent transporters that are widely distributed in prokaryotes and eukaryotes. Transport across the cytoplasmic membrane is mediated by three proteins: FhuD in the periplasm, FhuB in the cytoplasmic membrane and FhuC (ATPase) associated with the inside of the cytoplasmic membrane. Interaction of FhuD with FhuB was studied in vitro with biotinylated synthetic 10 residue and 20–24 residue peptides of FhuB by determining the activity of β-galactosidase linked to the peptides via streptavidin. Peptides identical in sequence to only one of the four periplasmic loops (loop 2), predicted by a transmembrane model of FhuB, and peptides representing a transmembrane segment and part of the adjacent cytoplasmic loop 7 of FhuB bound to FhuD. Decapeptides were transferred into the periplasm of cells through a FhuA deletion derivative that forms permanently open channels three times as large as the porins in the outer membrane. FhuB peptides that bound to FhuD inhibited ferrichrome transport, while peptides that did not bind to FhuD did not affect transport. These data led us to propose that the periplasmic FhuD interacts with a transmembrane region and the cytoplasmic segment 7 of FhuB. The transmembrane region may be part of a pore through which a portion of FhuD inserts into the cytoplasmic membrane during transport. The cytoplasmic segment 7 of FhuB contains the conserved amino acid sequence EAA…G (in FhuB DTA…G) found in ABC transporters, which is predicted to interact with the cytoplasmic FhuC ATPase. Triggering of ATP hydrolysis by substrate-loaded FhuD may occur by physical interaction between FhuD and FhuC, which bind close to each other on loop 7. Although FhuB consists of two homologous halves, FhuB(N) and FhuB(C), the sites identified for FhuD-mediated ferrichrome transport are asymmetrically arranged.  相似文献   

17.
We report here the crystal structure of the Pseudomonas aeruginosa multidrug exporter MexB, an intensively studied member of the resistance-nodulation-cell division family of secondary active transporters, at 3.0 Å. MexB forms an asymmetric homotrimer where each subunit adopts a different conformation representing three snapshots of the transport cycle similar to the recently determined structures of its close homologue AcrB from Escherichia coli, so far the sole structurally characterized member of the superfamily. As for AcrB, the conformations of two subunits can be clearly assigned to either the binding step or the extrusion step in the transport process. Unexpectedly, a remarkable conformational shift in the third subunit is observed in MexB, which has potential implications for the assembly of the tripartite MexAB-OprM drug efflux system. Furthermore, an n-dodecyl-d-maltoside molecule was found bound to the internal multidrug-binding cavity, which might indicate that MexB binds and transports detergent molecules as substrates. As the only missing piece of the puzzle in the MexAB-OprM system, the X-ray structure of MexB completes the molecular picture of the major pump mediating intrinsic and acquired multidrug resistance in P. aeruginosa.  相似文献   

18.
AcrAB-TolC is a constitutively expressed, tripartite efflux transporter complex that functions as the primary resistance mechanism to lipophilic drugs, dyes, detergents, and bile acids in Escherichia coli. TolC is an outer membrane channel, and AcrA is an elongated lipoprotein that is hypothesized to span the periplasm and coordinate efflux of such substrates by AcrB and TolC. AcrD is an efflux transporter of E. coli that provides resistance to aminoglycosides as well as to a limited range of amphiphilic agents, such as bile acids, novobiocin, and fusidic acid. AcrB and AcrD belong to the resistance nodulation division superfamily and share a similar topology, which includes a pair of large periplasmic loops containing more than 300 amino acid residues each. We used this knowledge to test several plasmid-encoded chimeric constructs of acrD and acrB for substrate specificity in a marR1 DeltaacrB DeltaacrD host. AcrD chimeras were constructed in which the large, periplasmic loops between transmembrane domains 1 and 2 and 7 and 8 were replaced with the corresponding loops of AcrB. Such constructs provided resistance to AcrB substrates at levels similar to native AcrB. Conversely, AcrB chimeras containing both loops of AcrD conferred resistance only to the typical substrates of AcrD. These results cannot be explained by simply assuming that AcrD, not hitherto known to interact with AcrA, acquired this ability by the introduction of the loop regions of AcrB, because (i) both AcrD and AcrA were found, in this study, to be required for the efflux of amphiphilic substrates, and (ii) chemical cross-linking in intact cells efficiently produced complexes between AcrD and AcrA. Since AcrD can already interact with AcrA, the alterations in substrate range accompanying the exchange of loop regions can only mean that substrate recognition (and presumably binding) is determined largely by the two periplasmic loops.  相似文献   

19.
The amount of the subunit proteins of the MexAB-OprM efflux pump in Pseudomonas aeruginosa was quantified by the immunoblotting method. A single cell of the wild-type strain contained about 2500, 1000, and 1200 copies of MexA, MexB, and OprM, respectively, and their stoichiometry therefore was 2:1:1. The mexR mutant produced an eightfold higher level of these proteins than did wild-type cells. Assuming that MexB and OprM exist as a trimer in a pump assembly, the total number of MexAB-OprM per wild-type cell was calculated to be about 400 assemblies. The substrate efflux rate of MexAB-OprM was calculated from the fluorescent intensity of ethidium in intact cells that a single cell extruded ethidium at a maximum of about 3 x 10(-19) mol s(-1) and, therefore, the turnover rate of a single pump unit was predicted to be about 500 s(-1).  相似文献   

20.
Nehme D  Poole K 《Journal of bacteriology》2007,189(17):6118-6127
In an effort to identify key domains of the Pseudomonas aeruginosa MexAB-OprM drug efflux system involved in component interactions, extragenic suppressors of various inactivating mutations in individual pump constituents were isolated and studied. The multidrug hypersusceptibility of P. aeruginosa expressing MexB with a mutation in a region of the protein implicated in oligomerization (G220S) was suppressed by mutations in the alpha/beta domain of MexA. MexB(G220S) showed a reduced ability to bind MexA in vivo while representative MexA suppressors (V66M and V259F) restored the MexA-MexB interaction. Interestingly, these suppressors also restored resistance in P. aeruginosa expressing OprM proteins with mutations at the proximal (periplasmic) tip of OprM that is predicted to interact with MexB, suggesting that these suppressors generally overcame defects in MexA-MexB and MexB-OprM interaction. The multidrug hypersusceptibility arising from a mutation in the helical hairpin of MexA implicated in OprM interaction (V129M) was suppressed by mutations (T198I and F439I) in the periplasmic alpha-helical barrel of OprM. Again, the MexA mutation compromised an in vivo interaction with OprM that was restored by the T198I and F439I substitutions in OprM, consistent with the hairpin domain mediating MexA binding to this region of OprM. Interestingly, these OprM suppressor mutations restored multidrug resistance in P. aeruginosa expressing MexB(G220S). Finally, the oprM(T198I) suppressor mutation enhanced the yields of all three constituents of a MexA-MexB-OprM(T198I) pump as detected in whole-cell extracts. These data highlight the importance of MexA and interactions with this adapter in promoting MexAB-OprM pump assembly and in stabilizing the pump complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号