首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and biological activity of a series of 2-[(4-methylthiopyridin-2-yl)methylsulfinyl]benzimidazoles are described. These compounds have potent inhibitory effects against the protein tyrosine phosphatase activity of CD45. Enzymatic analysis with several phosphatases revealed that compound 5a had high specificity for CD45 compared with serine/threonine phosphatases (PP1, PP2A), tyrosine phosphatases (LAR, PTP1B and PTP-S2) and dual phosphatase (VHR).  相似文献   

2.
Type 2 diabetes is increasing at an alarming rate worldwide, and there has been a considerable effort in several laboratories to identify suitable targets for the design of drugs against the disease. To this end, the protein tyrosine phosphatases that attenuate insulin signaling by dephosphorylating the insulin receptor (IR) have been actively pursued. This is because inhibiting the phosphatases would be expected to prolong insulin signaling and thereby facilitate glucose uptake and, presumably, result in a lowering of blood glucose. Targeting the IR protein tyrosine phosphatase, therefore, has the potential to be a significant disease-modifying strategy. Several protein tyrosine phosphatases (PTPs) have been implicated in the dephosphorylation of the IR. These phosphatases include PTPalpha, LAR, CD45, PTPepsilon, SHP2, and PTP1B. In most cases, there is evidence for and against the involvement of the phosphatases in insulin signaling. The most convincing data, however, support a critical role for PTP1B in insulin action. PTP1B knockout mice are not only insulin sensitive but also maintain euglycemia (in the fed state), with one-half the level of insulin observed in wild-type littermates. Interestingly, these mice are also resistant to diet-induced obesity when fed a high-fat diet. The insulin-sensitive phenotype of the PTP1B knockout mouse is reproduced when the phosphatase is also knocked down with an antisense oligonucleotide in obese mice. Thus PTP1B appears to be a very attractive candidate for the design of drugs for type 2 diabetes and obesity.  相似文献   

3.
Tyrosine phosphorylation of the insulin receptor is the initial event following receptor binding to insulin, and it induces further tyrosine phosphorylation of various intracellular molecules. This signaling is countered by protein tyrosine phosphatases (PTPases), which reportedly are associated with insulin resistance that can be reduced by regulation of PTPases. Protein tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus. Here, we show that PTP1B and LAR are expressed in human fibroblasts, and we examine the regulation of PTPase activity in fibroblasts from patients with an insulin receptor gene mutation as an in vitro model of insulin resistance. Total PTPase activity was significantly lower in the cytosolic and membrane fractions of fibroblasts with mutations compared with controls (p<0.05). Insulin stimulation of fibroblasts with mutations resulted in a significantly smaller increase in PTP1B activity compared with stimulation of wild-type fibroblasts (p<0.05). This indicates that insulin receptor gene mutations blunt increases in PTPase activity in response to insulin, possibly via a negative feedback mechanism. Our data suggest that the PTPase activity in patients with insulin receptor gene mutation and severe insulin resistance may differ from that in ordinary type 2 diabetes.  相似文献   

4.
Protein tyrosine phosphatases (PTPs) contain an essential thiol in the active site which may be susceptible to attack by nitric oxide-derived biological oxidants. We assessed the effects of peroxynitrite, nitric oxide, and S-nitrosoglutathione on the activity of three human tyrosine phosphatases in vitro. The receptor-like T-cell tyrosine phosphatase (CD45), the non-receptor-like tyrosine phosphatase PTP1B, and leukocyte-antigen-related (LAR) phosphatase were all irreversibly inactivated by peroxynitrite in less than 1 s with IC(50) values of 相似文献   

5.
Protein-tyrosine phosphatases (PTPases) play a key role in maintaining the steady-state tyrosine phosphorylation of the insulin receptor (IR) and its substrate proteins such as insulin receptor substrate 1 (IRS-1). However, the PTPase(s) that inactivate IR and IRS-1 under physiological conditions remain unidentified. Here, we analyze the subcellular distribution in rat adipocytes of several PTPases thought to be involved in the counterregulation of insulin signaling. We found that the transmembrane enzymes, protein-tyrosine phosphatase (PTP)-alpha and leukocyte common antigen-related (LAR), were detected predominantly in the plasma membrane and to a lesser extent in the heavy microsomes, a distribution similar to that of insulin receptor. PTP-1B and IRS-1 were present in light microsomes and cytosol, whereas SHPTP2/Syp was exclusively cytosolic. Insulin induced a redistribution of PTP-alpha from the plasma membrane to the heavy microsomes in a parallel fashion with the receptor. The distribution of PTP-1B in the light microsomes from resting adipocytes was similar to that of IRS-1 as determined by sucrose velocity gradient fractionation. Analysis of the catalytic activity of partially purified rat adipocyte PTP-alpha and LAR and recombinant PTP-1B showed that all three PTPases dephosphorylate IR. When a mix of IR/IRS-1 was used as a substrate, PTP-1B was particularly effective in dephosphorylating IRS-1. Considering that IR and IRS-1 can be dephosphorylated in internal membrane compartments from rat adipocytes (Kublaoui, B., Lee, J., and Pilch, P.F. (1995) J. Biol. Chem. 270, 59-65) and that PTP-alpha and PTP-1B are the respective PTPases in these fractions, we conclude that these PTPases are responsible for the counterregulation of insulin signaling there, whereas both LAR and PTP-alpha may act upon cell surface insulin receptors.  相似文献   

6.
Most receptor-like, transmembrane protein tyrosine phosphatases (PTPases), such as CD45 and the leukocyte common antigen-related (LAR) molecule, have two tandemly repeated PTPase domains in the cytoplasmic segment. The role of each PTPase domain in mediating PTPase activity remains unclear; however, it has been proposed that PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity, would regulate substrate specificity. In this paper, we examine the function of each PTPase domain of LAR in vivo using a potential physiological substrate, namely insulin receptor, and LAR mutant proteins in which the conserved cysteine residue was changed to a serine residue in the active site of either or both PTPase domains. LAR associated with and preferentially dephosphorylated the insulin receptor that was tyrosine phosphorylated by insulin stimulation. Its association was mediated by PTPase domain 2, because the mutation of Cys-1813 to Ser in domain 2 resulted in weakening of the association. The Cys-1522 to Ser mutant protein, which is defective in the LAR PTPase domain 1 catalytic site, was tightly associated with tyrosine-phosphorylated insulin receptor, but failed to dephosphorylate it, indicating that LAR PTPase domain 1 is critical for dephosphorylation of tyrosine-phosphorylated insulin receptor. This hypothesis was further confirmed by using LAR mutants in which either PTPase domain 1 or domain 2 was deleted. Moreover, the association of the extracellular domains of both LAR and insulin receptor was supported by using the LAR mutant protein without the two PTPase domains. LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1. These results indicate that each domain of LAR plays distinct functional roles through phosphorylation and dephosphorylation in vivo.  相似文献   

7.
Organovanadium compounds have been shown to be insulin sensitizers in vitro and in vivo. One potential biochemical mechanism for insulin sensitization by these compounds is that they inhibit protein tyrosine phosphatases (PTPs) that negatively regulate insulin receptor activation and signaling. In this study, bismaltolato oxovanadium (BMOV), a potent insulin sensitizer, was shown to be a reversible, competitive phosphatase inhibitor that inhibited phosphatase activity in cultured cells and enhanced insulin receptor activation in vivo. NMR and X-ray crystallographic studies of the interaction of BMOV with two different phosphatases, HCPTPA (human low molecular weight cytoplasmic protein tyrosine phosphatase) and PTP1B (protein tyrosine phosphatase 1B), demonstrated uncomplexed vanadium (VO(4)) in the active site. Taken together, these findings support phosphatase inhibition as a mechanism for insulin sensitization by BMOV and other organovanadium compounds and strongly suggest that uncomplexed vanadium is the active component of these compounds.  相似文献   

8.
Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta, PTPepsilon, CD45, LAR, PTP1B and SHP-1), using pNPP as substrate. Most noticeable is the increase in the turnover number for PTPbeta with increasing pH and the weak pH-dependence of the turnover number of CD45. The kinetic data for PTPalpha-D1 and PTPalpha-D1D2 suggest that D2 affects the catalysis of pNPP. PTPepsilon and the closely homologous PTPalpha behave differently. The K(m) data were lower for PTPepsilon than those for PTPalpha, while the inverse was observed for the catalytic efficiencies.  相似文献   

9.
Protein tyrosine phosphatases (PTPases) and protein tyrosine kinase (PTKases) regulate the phosphorylation and dephosphorylation of tyrosine residues in proteins, events that are essential for a variety of cellular functions. PTPases such as PTP1B and the Yersinia PTPase play an important role in diseases including type II diabetes and bubonic plague. A library of 67 bidentate PTPase inhibitors that are based on the alpha-ketocarboxylic acid motif has been synthesized using parallel solution-phase methods. Two aryl alpha-ketocarboxylic acids were tethered to a variety of different diamine linkers through amide bonds. The compounds were assayed in crude form against the Yersinia PTPase, PTP1B, and TCPTP. Six compounds were selected for further evaluation, in purified form, against the Yersinia PTPase, PTP1B, TCPTP, LAR, and CD45. These compounds had IC50 values in the low micromolar range against the Yersinia PTPase, PTP1B, and TCPTP, showed good selectivity for PTP1B over LAR, and modest selectivity over CD45. The correlation between linker structure and inhibitor activity shows that aromatic groups in the linker can play an important role in determining binding affinity in this class of inhibitors.  相似文献   

10.
Polyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP). Under aerobic conditions, the PTP inactivation by 2-nitro-9,10-phenanthrenedione followed a pseudo-first-order process, with the rate of inactivation increasing nearly linearly with increasing inhibitor concentration, yielding apparent inactivation rate constants of 4300, 387, and 5200 M(-1) s(-1) at pH 7.2 against CD45, PTP1B, and LAR, respectively. The rate of CD45 inactivation increased approximately 25-fold from pH 6.0 to 7.5, with complete inactivation achieved using a catalytic amount (0.05 molar equiv) of the inhibitor. The quinone-catalyzed CD45 inactivation was prevented by catalase or superoxide dismutase. Inactivated CD45 after (125)I-9,10-phenanthrenedione treatment carried no radioactivity, indicating the absence of a stable inhibitor/enzyme complex. The activity of inactivated CD45 was partially restored ( approximately 10%) by hydroxylamine or dithiothreitol, supporting the presence of a small population of sulfenic acid or sulfenyl-amide species. Treatment of PTP1B with 2-nitro-9,10-phenanthrenedione resulted in the specific and sequential oxidation of the catalytic cysteine to the sulfinic and sulfonic acid. These results suggest that reactive oxygen species and the semiquinone radical, continuously generated during quinone-catalyzed redox cycling, mediate the specific catalytic cysteine oxidation. Naturally occurring quinones may act as efficient regulators of protein tyrosine phosphorylation in biological systems. Aberrant phosphotyrosine homeostasis resulting from continued polyaromatic hydrocarbon quinone exposure may play a significant role in their disease etiology.  相似文献   

11.
目的: 探讨高分压氧下淋巴细胞内酪氨酸磷酸酶SHP-1和CD45功能状态的变化.方法: 分别用能引起功能发生不同变化的高分压氧处理淋巴细胞,检测细胞内酪氨酸磷酸酶SHP-1和CD45的催化活性、蛋白量及蛋白磷酸化水平.结果: 经各压力-时程的高分压氧处理后,SHP-1的活性均降低;而CD45仅在具有抑制细胞功能的氧剂量处理后其活性才降低.两种酶的蛋白表达量及酪氨酸磷酸化水平没有发生显著变化.结论: 高分压氧下SHP-1和CD45活性降低可能是由于酶结构受增多的活性氧破坏引起;SHP-1和CD45可能是所选高分压氧方案引起淋巴细胞功能变化的作用位点.  相似文献   

12.
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.  相似文献   

13.
Protein tyrosine phosphatases are a class of enzymes that function to modulate tyrosine phosphorylation of cellular proteins and play an essential role in regulating cell function. PTP1B has been implicated in the negative regulation of the insulin signaling pathway by dephosphorylating the activated insulin receptor. Inhibiting this phosphatase and preventing the insulin-receptor downregulation has been suggested as a target for the treatment of Type II diabetes. A high-throughput screen for inhibitors of PTP1B was developed using a scintillation proximity assay (SPA) with GST-- or FLAG--PTP1B((1-320)) and a potent [(3)H]-tripeptide inhibitor. The problem of interference from extraneous oxidizing and alkylating agents which react with the cysteine active-site nucleophile was overcome by the use of the catalytically inactive C215S form of the native enzyme (GST--PTP1B(C215S)). The GST--PTP1B was linked to the protein A scintillation bead via GST antibody. The radiolabeled inhibitor when bound to the enzyme gave a radioactive signal that was competed away by the unknown competitive compounds. Further utility of PTP1B(C215S) was demonstrated by mixing in the same well both the catalytically inactive GST--PTP1B(C215S) and the catalytically active FLAG--CD45 with an inhibitor. Both a binding and kinetic assay was then performed in the same 96-well plate with the inhibition results determined for the PTP1B(C215S) (binding assay) and CD45 (activity assay). In this way inhibitors could be differentiated between the two phosphatases under identical assay conditions in one 96-well assay plate. The use of a mutant to reduce interference in a binding assay and compare with activity assays is also amenable for most cysteine active-site proteases.  相似文献   

14.
Allosteric inhibition of protein tyrosine phosphatase 1B   总被引:8,自引:0,他引:8  
Obesity and type II diabetes are closely linked metabolic syndromes that afflict >100 million people worldwide. Although protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for the treatment of both syndromes, the discovery of pharmaceutically acceptable inhibitors that bind at the active site remains a substantial challenge. Here we describe the discovery of an allosteric site in PTP1B. Crystal structures of PTP1B in complex with allosteric inhibitors reveal a novel site located approximately 20 A from the catalytic site. We show that allosteric inhibitors prevent formation of the active form of the enzyme by blocking mobility of the catalytic loop, thereby exploiting a general mechanism used by tyrosine phosphatases. Notably, these inhibitors exhibit selectivity for PTP1B and enhance insulin signaling in cells. Allosteric inhibition is a promising strategy for targeting PTP1B and constitutes a mechanism that may be applicable to other tyrosine phosphatases.  相似文献   

15.
Сalix[4]arenes bearing methylenebisphosphonic or hydroxymethylenebisphosphonic acid fragments at the wide rim of the macrocycle were studied as inhibitors of PTP1B. Some of the inhibitors showed IC50 values in the micromolar range and good selectivity in comparison with other protein tyrosine phosphatases such as TC-PTP, PTPβ, LAR, and CD45. Kinetic studies indicated that the calix[4]arene derivatives influence PTP1B activity as slow-binding inhibitors. Based on molecular docking results, the binding modes of the macrocyclic bisphosphonates in the active centre of PTP1B are discussed.  相似文献   

16.
Regulation of the steady-state tyrosine phosphorylation of the insulin receptor and its postreceptor substrates are essential determinants of insulin signal transduction. However, little is known regarding the molecular interactions that influence the balance of these processes, especially the phosphorylation state of postinsulin receptor substrates, such as insulin receptor substrate-1 (IRS-1). The specific activity of four candidate protein-tyrosine phosphatases (protein-tyrosine phosphatase 1B (PTP1B), SH2 domain-containing PTPase-2 (SHP-2), leukocyte common antigen-related (LAR), and leukocyte antigen-related phosphatase) (LRP) toward IRS-1 dephosphorylation was studied using recombinant proteins in vitro. PTP1B exhibited the highest specific activity (percentage dephosphorylated per microg per min), and the enzyme activities varied over a range of 5.5 x 10(3). When evaluated as a ratio of activity versus IRS-1 to that versus p-nitrophenyl phosphate, PTP1B remained significantly more active by 3.1-293-fold, respectively. Overlay blots with recombinant Src homology 2 domains of IRS-1 adaptor proteins showed that the loss of IRS-1 binding of Crk, GRB2, SHP-2, and the p85 subunit of phosphatidylinositol 3'-kinase paralleled the rate of overall IRS-1 dephosphorylation. Further studies revealed that the adaptor protein GRB2 strongly promoted the formation of a stable protein complex between tyrosine-phosphorylated IRS-1 and catalytically inactive PTP1B, increasing their co-immunoprecipitation from an equimolar solution by 13.5 +/- 3.3-fold (n = 7; p < 0.01). Inclusion of GRB2 in a reaction mixture of IRS-1 and active PTP1B also increased the overall rate of IRS-1 tyrosine dephosphorylation by 2.7-3.9-fold (p < 0.01). These results provide new insight into novel molecular interactions involving PTP1B and GRB2 that may influence the steady-state capacity of IRS-1 to function as a phosphotyrosine scaffold and possibly affect the balance of postreceptor insulin signaling.  相似文献   

17.
Previous studies implicate protein-tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related phosphatase (LAR) as negative regulators of insulin signaling. The expression and/or activity of PTP1B and LAR are increased in muscle of insulin-resistant rodents and humans. Overexpression of LAR selectively in muscle of transgenic mice causes whole body insulin resistance. To determine whether overexpression of PTP1B also causes insulin resistance, we generated transgenic mice overexpressing human PTP1B selectively in muscle at levels similar to those observed in insulin-resistant humans. Insulin-stimulated insulin receptor (IR) tyrosyl phosphorylation and phosphatidylinositol 3'-kinase activity were impaired by 35% and 40-60% in muscle of PTP1B-overexpressing mice compared with controls. Insulin stimulation of protein kinase C (PKC)lambda/zeta activity, which is required for glucose transport, was impaired in muscle of PTP1B-overexpressing mice compared with controls, showing that PTP1B overexpression impairs activation of these PKC isoforms. Furthermore, hyperinsulinemic-euglycemic clamp studies revealed that whole body glucose disposal and muscle glucose uptake were decreased by 40-50% in PTP1B-overexpressing mice. Overexpression of PTP1B or LAR alone in muscle caused similar impairments in insulin action; however, compound overexpression achieved by crossing PTP1B- and LAR-overexpressing mice was not additive. Antibodies against specific IR phosphotyrosines indicated overlapping sites of action of PTP1B and LAR. Thus, overexpression of PTP1B in vivo impairs insulin sensitivity, suggesting that overexpression of PTP1B in muscle of obese humans and rodents may contribute to their insulin resistance. Lack of additive impairment of insulin signaling by PTP1B and LAR suggests that these PTPs have overlapping actions in causing insulin resistance in vivo.  相似文献   

18.
Protein tyrosine phosphatase 1B (PTP1B) is a highly specific negative regulator of insulin receptor signaling in vivo. The determinants of PTP1B specificity for the insulin receptor versus other receptor tyrosine kinases are largely unknown. Here, we report a crystal structure at 2.3 A resolution of the catalytic domain of PTP1B (trapping mutant) in complex with the phosphorylated tyrosine kinase domain of the insulin receptor (IRK). The crystallographic asymmetric unit contains two PTP1B-IRK complexes that interact through an IRK dimer interface. Rather than binding to a phosphotyrosine in the IRK activation loop, PTP1B binds instead to the opposite side of the kinase domain, with the phosphorylated activation loops sequestered within the IRK dimer. The crystal structure provides evidence for a noncatalytic mode of interaction between PTP1B and IRK, which could be important for the selective recruitment of PTP1B to the insulin receptor.  相似文献   

19.
We have characterized some novel caged fluorescein diphosphates as photoactivatable, cell-permeable substrates for protein tyrosine phosphatases and explored their usefulness in identifying inhibitors of tyrosine phosphatases. 1-(2-Nitrophenyl)ethyl protected fluorescein diphosphate (NPE-FDP) undergoes rapid photolysis to release FDP upon irradiation with a 450-W UV immersion lamp and its by-product does not inactivate protein tyrosine phosphatase 1B (PTP1B) or alters the viability of cells. The generated FDP from photolysis of NPE-FDP was shown to have exactly the same properties as FDP, which can be used as a PTP substrate in pure enzyme assays. We have also demonstrated that the PTP activity can be measured using NPE-FDP in small droplets. Its advantage as an inert substrate before photolysis allows the possibility of applying nanospray technology in screening and optimizing PTP inhibitors through a large chemical library. Like other caged bioeffectors such as nucleotide and inositol trisphosphate, NPE-FDP is cell-permeable. The NPE-FDP can be photolyzed to generate FDP inside cells, and then can be hydrolyzed by phosphatases to produce fluorescein monophosphate and subsequently to fluorescein. Although Jurkat cells contain high concentrations of CD45, it has not been possible to use FDP as a substrate to measure CD45 activity in the intact cell. This is due to the hydrolysis of FDP by several other cellular phosphatases. However, NPE-FDP can be useful as a cell-permeable substrate for overexpressed phosphatases such as alkaline phosphatase.  相似文献   

20.
In the course of bioassay-guided study on the EtOAc extract of a culture broth of the marine-derived fungus Cosmospora sp. SF-5060, aquastatin A (1) was isolated as a protein tyrosine phosphatase 1B (PTP1B) inhibitory component produced by the fungus. The compound was isolated by various chromatographic methods, and the structure was determined mainly by analysis of NMR spectroscopic data. Compound 1 exhibited potent inhibitory activity against PTP1B with IC50 value of 0.19 μM, and the kinetic analyses of PTP1B inhibition by compound 1 suggested that the compound is inhibiting PTP1B activity in a competitive manner. Aquastatin A (1) also showed modest but selective inhibitory activity toward PTP1B over other protein tyrosine phosphatases, such as TCPTP, SHP-2, LAR, and CD45. In addition, the result of hydrolyzing aquastatin A (1) suggested that the dihydroxypentadecyl benzoic acid moiety in the molecule is responsible for the inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号