首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to examine the operation of diversifying selection as the maintenance mechanism of excessive additive genetic variance for viability in southern populations in comparison with northern populations of Drosophila melanogaster, two sets of experiments were conducted using second chromosomes extracted from the Ogasawara population (a southern population in Japan) and from the Aomori population (a northern population in Japan). Chromosomal homozygote and heterozygote viabilities were estimated in eight kinds of artificially produced breeding environments. The main findings in the present investigation are as follows: (1) Significant genotype-environment interaction was observed using chromosomes extracted from the Ogasawara population. Indeed, the estimate of the genotype-environment interaction variance for heterozygotes was significantly larger than that of the genotypic variance. On the other hand, when chromosomes sampled from the Aomori population were examined, that interaction variance was significant only for homozygotes and its value was no more than one quarter of that for the chromosomes from the Ogasawara population. (2) The average genetic correlation between any two viabilities of the same lines estimated in the eight kinds of breeding environments for the chromosomes sampled from the Ogasawara population was smaller than that for the chromosomes from the Aomori population both in homozygotes and in heterozygotes, especially in the latter. (3) The stability of heterozygotes over homozygotes against fluctuations of environmental conditions was seen in the chromosomes from the Ogasawara population, but not from the Aomori population. (4) From the excessive genotype-environment interaction variance compared with the genotypic variance in heterozygotes, it was suggested for the chromosomes from the Ogasawara population that the reversal of viability order between homozygotes took place in some environments at the locus level. On the basis of these findings, it is strongly suggested that diversifying selection is operating in a southern population of D. melanogaster on some of the viability polygenes which are probably located outside the structural loci, and the excessive additive genetic variance of viability in southern populations is maintained by this type of selection.  相似文献   

2.
Tachida H  Mukai T 《Genetics》1985,111(1):43-55
To investigate whether or not an excess of additive genetic variance for viability detected in southern natural populations of Drosophila melanogaster was created by diversifying selection, genotype-environment interaction was tested as follows. (1) Two karyotype chromosomes were used: 61 second chromosomes with the standard karyotype and 63 second chromosomes carrying In(2L)t. Their homozygote viabilities were larger than 50% of the average viability of random heterozygotes. (2) The effects of two factors (culture media and yeasts) were examined at three levels (the culture media: tomato, corn and banana; and the yeasts: sake, brewer's and baker's). The results of 16 three by three factorial experiments by the Cy method in the same karyotype groups for relative viabilities of homozygotes and heterozygotes elucidated the following findings: (1) there was no significant difference between the two karyotype groups, (2) the variance components of genotype-environment interaction were highly significant, (3) the variance component of heterozygotes was significantly smaller than that of homozygotes. From the experimental findings and previous results, diversifying selection in natural populations acting on viability polygenes to increase the additive genetic variance was suggested. The relation of the present result to protein polymorphism is also discussed.  相似文献   

3.
Summary Natural populations of Drosophila melanogaster from Anyang and Susac (suburbs of Seoul) have been analyzed with respect to viability variation on the second chromosome. Homozygotes as well as random heterozygotes for wild chromosomes were studied. The frequency of lethal factors was about 16 per cent, that of drastics 26 per cent. The average viability of homozygotes was 0.650 including lethal lines and 0.858 for quasinormals; that for random heterozygotes was 1.125. Allelism tests have been performed for the lethals. The allelism rate turned out to be as high as 0.036 and 0.0214, respectively. Using a formula by Nei, the effective population size can be estimated from these data. Korean D. melanogaster populations proved as small as 2000 to 3000 individuals. No correlation between homozygous and heterozygous viabilities could be found. According to these observations, along with the fact that partly big clusters of identic lethals could be found in the allelism tests, it is concluded that in Korean populations quite a large part of the hard genetic load is balanced. The connection between population size, population structure and associative or genuine overdominance is discussed.  相似文献   

4.
Christopher Wills 《Genetics》1975,81(1):177-189
A reanalysis of Drosophila viability data was undertaken to determine the role of genotype-environment interactions in the maintenance of polymorphism. Between-replicate variances of viabilities in chromosomal homozygotes and heterozygotes with the same mean fitnesses were compared, with the expectation that if the heterozygote variance were on the average greater, conditional overdominance would be prevalent; if it were less, partial dominance would be prevalent; and if it were the same, marginal overdominance of the type considered by Wallace (1968) would be the prevalent type of variation. In fact, heterozygote variance was slightly less. The work of Dempster (1955) and of Gillespie and Langley (1974) is cited to show that this situation can still lead to balanced polymorphisms. Their general model for genetic variation in populations, consistent with the viability data, is reinforced.  相似文献   

5.
Arrowhead (AR) third chromosome arrangements of Drosophila pseudoobscura, whose competitive fitnesses had been determined in population cages, were tested for their genetic loads in homozygous, heterozygous (homokaryotypic), and heterokaryotypic (AR/CH) combinations. The results showed that their competitive population cage performances were correlated to their viabilities as homozygotes but were not correlated to their viabilities as heterozygotes or as heterokaryotypes. However, the results do not fit in too simply with the mutational model of population structure, since the improvement of homozygous viability with increased competitive fitness was not accompanied by a significant degree of dominance as measured by the regression of viabilities of heterozygotes on homozygotes. Only the AR chromosomes derived from the population with poorest competitive fitness showed marked partial dominance (h=.35). The viabilities of heterokaryotypes were markedly uniform for all chromosomes tested and produced significantly greater numbers of flies per culture than the homokaryotypes. In general, the results show that the ranking of relative competitive fitnesses of these chromosomes is not a simple extrapolation of their viabilities, although marked changes in the populations tested have occurred. It is proposed that the differences in competitive fitness, homozygous viability, and degree of dominance observed among these chromosomes, arise from differences in genetic variability which enable different linkage relationships to be established for genes affecting these attributes.  相似文献   

6.
Two hundred second chromosomes were extracted from a Japanese population in October of 1972, and the viabilities and productivities of homozygotes and heterozygotes from them were examined. Viability was measured by the Cy method and productivity by the number of progeny produced per female. The frequency of lethal-carrying chromosomes was 0.315. When the average heterozygote viability was standardized as 1.000, the average homozygote viability was 0.595 including the lethal lines, and 0.866 excluding them. The frequency of recessive sterile chromosomes among 131 non-lethal lines was 0.092 in females and 0.183 in males. There were two instances in which homozygosis for the second chromosome caused sterility in both sexes, which was close to the number expected (2.2) on a random basis of 0.092 x 0.183 x 131. When the average heterozygote productivity of 200 lines was standardized as 1.000, the average homozygote productivity was 0.532 including female steriles, and 0.584 excluding them. The ratio of detrimental load to lethal load was 0.383, while the ratio of partial sterility load to complete sterility load was 5.767. The average viability of lethal heterozygotes was slightly, but not significantly, lower than that of lethal-free heterozygotes, while the average productivity of lethal heterozygotes was significantly lower than that of lethal-free heterozygotes. There was a significant association of sterility in either sex with low viability of homozygotes. However, no statistically significant differences in viability and productivity were detected between sterile heterozygotes and non-sterile heterozygotes. The heterozygous effects of viability and productivity polygenes were examined by regressions of the heterozygotes on the sum of corresponding homozygotes. The regression coefficients were slightly positive for both viability and productivity if lethal and sterile chromosomes were excluded. The correlation between viability and productivity in homozygotes was significantly positive when sterile chromosomes were included, but the significance disappeared when the sterile chromosomes were excluded. In the heterozygotes there were no detectable correlations between them.  相似文献   

7.
Six hundred and ninety-one second chromosomes were extracted from a Raleigh, North Carolina population, and the following experimental results were obtained: (1) Salivary gland chromosomes of all lines were observed and the number of inversion-carrying chromosomes was 130, among which 76 carried In(2R)NS, 36 carried In(2L)t, 4 carried In(2L)t and In(2R)NS, and 14 carried different kinds of rare inversions. (2) Viabilities of homozygotes and heterozygotes were examined. The frequency of lethal-carrying chromosomes was 275/691 (or 0.398):70/130 (or 0.538) in inversion-carrying chromosomes and 205/561 (or 0.365) in inversion-free chromosomes. The former is significantly higher than the latter. The average homozygote viability was 0.4342 including lethal lines and 0.7163 excluding those, the average heterozygote viability being 1.0000. The detrimental load to lethal load ratio (D:L ratio) was 0.334/0.501 = 0.67. The average viability of lethal heterozygotes was less than that of lethal-free heterozygotes, significantly in inversion-free individuals but not significantly so in inversion-carrying individuals. Inversion heterozygotes seem to have slightly better viability than the inversion-free heterozygotes on the average, but not significantly so. (3) The average degree of dominance of viability polygenes was estimated to be 0.293 +/- 0.071 for all heterozygotes whose component chromosomes had better viabilities than 0.6 of the average heterozygote viability, 0.177 +/- 0.077 for inversion-free heterozygotes and 0.489 +/- 0.082 for inversion heterozygotes. (4) Mutation rates of viability polygenes and lethal genes were estimated on the basis of genetic loads and average degrees of dominance of lethal genes and viability polygenes. Estimates were very close to those obtained by direct estimation. (5) Possible overdominance and epistasis were detected, but the magnitude must be very small. (6) The effective size of the population was estimated to be much greater than 10,000 by using the allelism rate of lethal-carrying chromosomes (0.0040) and their frequency.-On the basis of these findings and the comparison with the predicted result (Mukai and Maruyama 1971), the mechanisms of the maintenance of genetic variability in the population are discussed.  相似文献   

8.
Relative viabilities of individuals homozygous or randomly heterozygous for wild O chromosomes derived from a marginal (Norwegian) and a central (Greek) population of D. subobscura were obtained by means of a newly prepared marker strain. In the central and marginal populations 20.8 and 28.8 percent of all chromosomes proved lethal or semilethal in homozygous condition. Mean viability was higher for +/+ random heterozygotes than for +/+ homozygotes. This remained the case for the marginal, but not for the central populations, after exclusion of the detrimental chromosomes from the calculations. The variances of viabilities were higher for homozygotes than for heterozygotes, but the test crosses with chromosomes from the marginal population had generally higher variances than those with chromosomes from the central population. No correlation was found in either populations between the action of a chromosome in homozygous condition with its action in heterozygous condition. This is interpreted as complete recessiveness of genetic load. The results are discussed in terms of the observed reduction of the inversion polymorphism which is not paralleled by a reduction in enzyme and, as shown here, by reduction in viability variation. It is thought that the heterotic effect of inversions is due to their homeostatic action, which depends less on structural genes than on higher orders of organization due to gene interaction or regulation. Whatever the causes, it is very likely that marginal populations differ from central populations with respect to their genetic system.  相似文献   

9.
We estimated the average dominance coefficient of mildly deleterious mutations (h, the proportion by which mutations in the heterozygous state reduce fitness components relative to those in the homozygous state) in the nematode Caenorhabditis elegans. From 56 worm lines that carry mutations induced by the point mutagen ethyl methanesulfonate (EMS), we selected 19 lines that are relatively high in fitness and estimated the viabilities, productivities, and relative fitnesses of heterozygotes and homozygotes compared to the ancestral wild type. There was very little effect of homozygous or heterozygous mutations on egg-to-adult viability. For productivity and relative fitness, we found that the average dominance coefficient, h, was approximately 0.1, suggesting that mildly deleterious mutations are on average partially recessive. These estimates were not significantly different from zero (complete recessivity) but were significantly different from 0.5 (additivity). In addition, there was a significant amount of variation in h among lines, and analysis of average dominance coefficients of individual lines suggested that several lines showed overdominance for fitness. Further investigation of two of these lines partially confirmed this finding.  相似文献   

10.
Spontaneous mutations were allowed to accumulate in a second chromosome that was transmitted only through heterozygous males for 40 generations. At 10-generation intervals the chromosomes were assayed for homozygous effects of the accumulated mutants. From the regression of homozygous viability on the number of generations of mutant accumulation and from the increase in genetic variance between replicate chromosomes it is possible to estimate the mutation rate and average effect of the individual mutants. Lethal mutations arose at a rate of 0.0060 per chromosome per generation. The mutants having small effects on viability are estimated to arise with a frequency at least 10 times as high as lethals, more likely 20 times as high, and possibly many more times as high if there is a large class of very nearly neutral mutations.-The dominance of such mutants was measured for chromosomes extracted from a natural population. This was determined from the regression of heterozygous viability on that of the sum of the two constituent homozygotes. The average dominance for minor viability genes in an equilibrium population was estimated to be 0.21. This is lower than the value for new mutants, as expected since those with the greatest heterozygous effect are most quickly eliminated from the population. That these mutants have a disproportionately large heterozygous effect on total fitness (as well as on the viability component thereof) is shown by the low ratio of the genetic load in equilibrium homozygotes to that of new mutant homozygotes.  相似文献   

11.
The extent of genetic variation in fitness and its components and genetic variation's dependence on environmental conditions remain key issues in evolutionary biology. We present measurements of genetic variation in preadult viability in a laboratory-adapted population of Drosophila melanogaster, made at four different densities. By crossing flies heterozygous for a wild-type chromosome and one of two different balancers (TM1, TM2), we measure both heterozygous (TM1/+, TM2/+) and homozygous (+/+) viability relative to a standard genotype (TM1/TM2). Forty wild-type chromosomes were tested, of which 10 were chosen to be homozygous viable. The mean numbers produced varied significantly between chromosome lines, with an estimated between-line variance in log(e) numbers of 0.013. Relative viabilities also varied significantly across chromosome lines, with a variance in log(e) homozygous viability of 1.76 and of log(e) heterozygous viability of 0.165. The between-line variance for numbers emerging increased with density, from 0.009 at lowest density to 0.079 at highest. The genetic variance in relative viability increases with density, but not significantly. Overall, the effects of different chromosomes on relative viability were remarkably consistent across densities and across the two heterozygous genotypes (TM1, TM2). The 10 lines that carried homozygous viable wild-type chromosomes produced significantly more adults than the 30 lethal lines at low density and significantly fewer adults at the highest density. Similarly, there was a positive correlation between heterozygous viability and mean numbers at low density, but a negative correlation at high density.  相似文献   

12.
Karlin S  Campbell RB 《Genetics》1980,94(4):1065-1084
The principle that a subdivided population subject to overdominance viability selection in each habitat will manifest a unique, globally attractng polymorphic equilibrium is posited. This follows as a corollary to the stronger principle that, if haploid selection or submultiplicative diploid selection (definition: the geometric mean of the homozygote viabilities is less than or equal to the heterozygote viability) is operating in each habitat,there is a unique, globally attracting stable equilibrium that may be monomorphic or polymorphic. These principles are proven for a broad spectrum of migration patterns. In all such migration selection systems, multiple fixation states cannot be simultaneously stable under submultiplicative viability regimes. Contrasting examples where submultiplicative viabilities are not in force are given.  相似文献   

13.
Bierne N  Tsitrone A  David P 《Genetics》2000,155(4):1981-1990
Associative overdominance, the fitness difference between heterozygotes and homozygotes at a neutral locus, is classically described using two categories of models: linkage disequilibrium in small populations or identity disequilibrium in infinite, partially selfing populations. In both cases, only equilibrium situations have been considered. In the present study, associative overdominance is related to the distribution of individual inbreeding levels (i.e., genomic autozygosity). Our model integrates the effects of physical linkage and variation in inbreeding history among individual pedigrees. Hence, linkage and identity disequilibrium, traditionally presented as alternatives, are summarized within a single framework. This allows studying nonequilibrium situations in which both occur simultaneously. The model is applied to the case of an infinite population undergoing a sustained population bottleneck. The effects of bottleneck size, mating system, marker gene diversity, deleterious genomic mutation parameters, and physical linkage are evaluated. Bottlenecks transiently generate much larger associative overdominance than observed in equilibrium finite populations and represent a plausible explanation of empirical results obtained, for instance, in marine species. Moreover, the main origin of associative overdominance is random variation in individual inbreeding whereas physical linkage has little effect.  相似文献   

14.
Departures from mendelian ratios have been analysed in all published family data for the peppered moth, Biston betularia. No distinction was made between different insularia alleles; thus carbonaria is top dominant while insularia is dominant over typical. Viabilities of five of the six genotypes were calculated by a simple algebraic method; a maximum likelihood method gave viabilities for all six genotypes together with their standard errors. Carbonaria homozygotes (and possibly also insularia homozygotes) have enhanced viability while the viability of insularia/carbonaria heterozygotes is reduced. The significance of these findings is discussed in relation to phenotype frequencies found in the wild.  相似文献   

15.
Effects of marker chromosomes on relative viability   总被引:2,自引:2,他引:0       下载免费PDF全文
Cockerham CC  Mukai T 《Genetics》1978,90(4):827-849
Viability relative to Cy/Pm as a standard was studied in Drosophila melanogaster. One experiment, E1, consisted of progeny from eleven distinct 7 x 7 factorial mating designs with reciprocals for second chromosomes extracted from a natural population. The other experiment, E2, consisted of two distinct sets of heterozygotes with reciprocals and corresponding homozygotes. It was established from E1 that there are little to no synergistic effects among different genotypes in a vial and that Cy and Pm heterozygotes vary almost as much as would be expected if one chromosome were held constant for wild-type heterozygotes. In wild-type heterozygotes, variances were estimated to be 0.0099 for average chromosomal effects, 0.0054 for interactions of chromosomes, 0.0021 for maternal effects, 0.0079 for paternal effects, and -0.0010 for the remaining interaction effects, all being significantly different from zero except the last. The variances of Cy and Pm heterozygotes, covariance of Cy and Pm heterozygotes, and covariances of Cy and Pm heterozygotes with wild-type heterozygotes, as well as the comparable statistics available in E2, all showed a large paternal component of variance and a smaller maternal component of variance, both unexpected results.—From E2 the variance of homozygotes, excluding error variance, was estimated to be 0.0149, and the covariances of homozygotes with wild-type heterozygotes to be 0.0056 for maternally derived chromosomes common and 0.0126 for paternally derived chromosomes common, again showing the larger paternal than maternal influence. The average genetic regression of heterozygotes on homozygotes of 0.61 was reduced only slightly to 0.56 by correcting for maternal and paternal variances. These genetic regressions, generally utilized as estimators of the average degree of dominance, are larger than any previously reported.—Differential meiotic drive in Cy and Pm parents was shown to be compatible with the large paternal and maternal variances, but other causes cannot be ruled out.—Approximations were developed for translating various variances, covariances, and regressions between single- and double-marker experiments, assuming that marker chromosomes behave as typical wild-type chromosomes in one case and assuming a (partially) recessive model with the population in mutation selection balance in another case. Various features, particularly the estimation of dominance, were compared and discussed between the two cases.  相似文献   

16.
Allozyme variation at the phosphoglucose isomerase (PGI) locus in the Glanville fritillary butterfly (Melitaea cinxia) is associated with variation in flight metabolic rate, dispersal rate, fecundity and local population growth rate. To map allozyme to DNA variation and to survey putative functional variation in genomic DNA, we cloned the coding sequence of Pgi and identified nonsynonymous variable sites that determine the most common allozyme alleles. We show that these single‐nucleotide polymorphisms (SNPs) exhibit significant excess of heterozygotes in field‐collected population samples as well as in laboratory crosses. This is in contrast to previous results for the same species in which other allozymes and SNPs were in Hardy–Weinberg equilibrium or exhibited an excess of homozygotes. Our results suggest that viability selection favours Pgi heterozygotes. Although this is consistent with direct overdominance at Pgi, we cannot exclude the possibility that heterozygote advantage is caused by the presence of one or more deleterious alleles at linked loci.  相似文献   

17.
An evolutionary dynamical system with explicit diploid genetics is used to investigate the likelihood of observing phenotypically overdominant heterozygotes versus heterozygous phenotypes that are intermediate between the homozygotes. In this model, body size evolves in a population with discrete demographic episodes and with competition limiting reproduction. A genotype-phenotype map for body size is used that can generate the two qualitative types of dominance interactions (overdominance versus intermediate dominance). It is written as a single-locus model with one focal locus and parameters summarizing the effects of alleles at other loci. Two types of evolutionarily stable strategy (ESS; continuously stable strategy, CSS) occur. The ESS is generated either (1) by the population ecology; or (2) by a local maximum of the genotype-phenotype map. Overdominant heterozygotes are expected to arise if the population evolves toward the second type of ESS, where nearly maximum body sizes are found. When other loci with partially dominant inheritance also evolve, the location of the maximum in the genotype-phenotype map repeatedly changes. It is unlikely that an evolving population will track these changes; ESSs of the second type now are at best quasi-stationary states of the evolutionary dynamics. Considering the restrictions on its probability, a pattern of phenotypic overdominance is expected to be rare.  相似文献   

18.
We use forward and coalescent models of population genetics to study chromosome fusions that reduce the recombination between two locally adapted loci. Under a continent–island model, a fusion spreads and reaches a polymorphic equilibrium when it causes recombination between locally adapted alleles to be less than their selective advantage. In contrast, fusions in a two‐deme model always spread; whether it reaches a polymorphic equilibrium or becomes fixed depends on the relative recombination rates of fused homozygotes and heterozygotes. Neutral divergence around fusion polymorphisms is markedly increased, showing peaks at the point of fusion and at the locally adapted loci. Local adaptation could explain the evolution of many of chromosome fusions, which are some of the most common chromosome rearrangements in nature.  相似文献   

19.
Mukai T  Nagano S 《Genetics》1983,105(1):115-134
About 500 second and 500 third chromosomes were extracted, using the marked inversion technique, from the Orlando-Lake Placid, Florida, population. From the experiments using these chromosomes, the following findings were obtained: (1) The frequencies of lethal-carrying chromosomes were 0.37 in the second and 0.55 in the third chromosomes. (2) The size of the population was estimated to be effectively infinite, on the basis of the allelism rate of lethal-carrying chromosomes. (3) The detrimental and lethal loads for viability were, respectively, 0.40 and 0.45 for the second and 0.52 and 0.78 for the third chromosomes. Consequently, the detrimental to lethal load ratio is 0.90 for the second and 0.67 for the third chromosomes. (4) Lethal genes were shown to be deleterious when heterozygous. (5) The average degree of dominance for mildly deleterious genes (viability polygenes) was estimated to be nearly 0.5, although the confidence interval is large. (6) Additive (sigma( 2) (A)) and dominance (sigma(2) ( D)) variances of viability were estimated by using a partial diallel cross method. The results were (see PDF) and (see PDF) for the second chromosomes. (7) Environmental variances of viability were estimated. The result indicates that the heterozygotes are more homeostatic than the homozygotes. The most striking finding is that the additive variance is larger than expected on the classical hypothesis from the detrimental load. Several possible explanations for the discrepancy are offered. The most likely cause, we suggest, is genotype-environment interaction (diversifying selection) acting on viability polygenes. Overdominance is inconsistent with the low dominance variance, and frequency-dependent selection also appears unlikely as an explanation.  相似文献   

20.
We analysed polymorphism for pericentric inversion in chromosome 3 of Oligoryzomys nigripes (Rodentia: Sigmodontinae) in several populations in Brazil and examined the meiotic behaviour of this chromosome in heterozygotes. We observed an orderly pairing of all chromosomes at pachytene in heterozygotes for the inverted chromosome 3. No indication of meiotic arrest and germ-cell death was found. Electron microscopy of synaptonemal complexes and conventional meiotic analysis indicated strictly nonhomologous synapsis and crossing-over suppression in the inverted region in the heterozygotes, which prevent the formation of unbalanced gametes. Thus, the pericentric inversion in chromosome 3 does not apparently result in any selective disadvantages in heterozygous carriers. In the majority of the populations studied, the frequencies of acrocentric homozygotes, metacentric homozygotes, and heterozygotes were in Hardy-Weinberg equilibrium. However, in some populations, we detected an excess of heterozygotes and a deficiency of acrocentric homozygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号