首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Previous studies have demonstrated greater functions ofosteoblasts (bone-forming cells) on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 microm to 22 microm) on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion) promising for their long term functions, criteria necessary to improve orthopedic implant efficacy.  相似文献   

2.
Metallic bone implants possess numerous problems limiting their long-term efficacy, such as poor prolonged osseointegration, stress shielding, and corrosion under in vivo environments. Such problems are compounded for bone cancer patients since numerous patients receive orthopedic implants after cancerous bone resection. Unfortunately, current orthopedic materials were not originally developed to simultaneously increase healthy bone growth (as in traditional orthopedic implant applications) while inhibiting cancerous bone growth. The long-term objective of the present research is to investigate the use of nano-rough selenium to prevent bone cancer from re-occurring while promoting healthy bone growth for this select group of cancer patients. Selenium is a well known anti-cancer chemical. However, what is not known is how healthy bone cells interact with selenium. To determine this, selenium, spherical or semispherical shots, were pressed into cylindrical compacts and these compacts were then etched using 1N NaOH to obtain various surface structures ranging from the micron, submicron to nano scales. Changes in surface chemistry were also analyzed. Through these etching techniques, results of this study showed that biologically inspired surface roughness values were created on selenium compacts to match that of natural bone roughness. Moreover, results showed that healthy bone cell adhesion increased with greater nanometer selenium roughness (more closely matching that of titanium). In this manner, this study suggests that nano-rough selenium should be further tested for orthopedic applications involving bone cancer treatment.  相似文献   

3.
To facilitate locomotion and support the body, the skeleton relies on the transmission of forces between muscles and bones through complex junctions called entheses. The varying mechanical and biological properties of the enthesis make healing this avascular tissue difficult; hence the need for an engineered alternative. Cells in situ interact with their environment on the nano-scale which suggests that engineered approaches to enthesis regeneration should include such biologically-inspired nano-scale surface features. The present in vitro study investigated the effects of etching poly-lactic-co-glycolic acid (PLGA) scaffolds to produce nano-topography on the adhesion of fibroblasts and osteoblasts, two integral enthesis cell types. Nano-topography was produced on PLGA by etching the scaffolds in NaOH. Results showed that etching PLGA with NaOH to create nano-scale surface features decreased fibroblast adhesion while it increased osteoblast adhesion; criteria critical for the spatial control of osteoblast and fibroblast adhesion for a successful enthesis tissue engineering material. Thus, the results of this study showed for the first time collective evidence that PLGA can be either treated with NaOH or not on ends of an enthesis tissue engineering construct to spatially increase osteoblast and fibroblast adhesion, respectively.  相似文献   

4.
In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micron-sized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours' adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.  相似文献   

5.
Natural bone consists of hard nanostructured hydroxyapatite (HA) in a nanostructured protein-based soft hydrogel template (ie, mostly collagen). For this reason, nanostructured HA has been an intriguing coating material on traditionally used titanium for improving orthopedic applications. In addition, helical rosette nanotubes (HRNs), newly developed materials which form through the self-assembly process of DNA base pair building blocks in body solutions, are soft nanotubes with a helical architecture that mimics natural collagen. Thus, the objective of this in vitro study was for the first time to combine the promising attributes of HRNs and nanocrystalline HA on titanium and assess osteoblast (bone-forming cell) functions. Different sizes of nanocrystalline HA were synthesized in this study through a wet chemical precipitation process following either hydrothermal treatment or sintering. Transmission electron microscopy images showed that HRNs aligned with nanocrystalline HA, which indicates a high affinity between both components. Some of the nanocrystalline HA formed dense coatings with HRNs on titanium. More importantly, results demonstrated enhanced osteoblast adhesion on the HRN/nanocrystalline HA-coated titanium compared with conventional uncoated titanium. Among all the HRN/nanocrystalline HA coatings tested, osteoblast adhesion was the greatest when HA nanometer particle size was the smallest. In this manner, this study demonstrated for the first time that biomimetic HRN/nanocrystalline HA coatings on titanium were cytocompatible for osteoblasts and, thus, should be further studied for improving orthopedic implants.  相似文献   

6.
The objective of the present in vitro study was to estimate the adhesion strength of nanometer crystalline hydroxyapatite (HA)-small intestine sub-mucosa (SIS) composites on model implant surfaces. Techniques of thermal denaturation (60 degrees C, 20 min) of SIS were used to enhance the adhesion strength of entheses materials to underlying implants. Specifically, results indicated that the adhesion strength of thermally denatured SIS was 2-3 times higher than that for normal unheated SIS. In addition, aqua-sonicated, hydrothermally treated nano-HA dispersions enhanced the adhesion strength of SIS on implant surfaces. Importantly, results of the present study demonstrated that human skeletal muscle cell (hSkMC) numbers were not affected by thermally denaturing SIS in nano-HA composite coatings; however, they increased on aqua-sonicated nano-HA/SIS composites compared with SIS alone. Interestingly, thermally denatured SIS that contained aqua-sonicated, hydrothermally treated nano-HA decreased human osteoblasts (hOBs) numbers compared with respective unheated composites; all other composites when thermally denatured did not influence hOB numbers. Results also showed that the number of hOBs increased on nano-HA/SIS composites compared with SIS composites alone. Human mesenchymal stem cell (hMSC) numbers were not affected by the presence of nano-HA in SIS composites. For these reasons, the collective results of this in vitro study demonstrated a technique to increase the coating strength of entheses coatings on implant surfaces (using thermally denatured SIS and aqua-sonicated, hydrothermally prepared nano-HA) while, at the same time, supporting cell functions important for entheses regeneration.  相似文献   

7.
Chitosan was used as a matrix to induce three-dimensional spheroids of HepG2 cells. Chitosan films were prepared and used for culturing Hep G2 cells. Attachment kinetics of the cells was studied on the chitosan films. The optimum seeding density of the Hep G2 cells, required for three-dimensional spheroid formation was determined and was found to be 5 × 104/ml. The growth kinetics of Hep G2 cells was studied using (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, and morphology of the cells was studied through optical photographs taken at various days of culture. The liver cell functions of the spheroids were determined by measuring albumin and urea secretions. The results obtained from these studies have shown that the culture of Hep G2 cells on chitosan matrix taking appropriate seeding density resulted in the formation of three-dimensional spheroids and exhibited higher amount of albumin and urea synthesis compared to monolayer culture. These miniature “liver tissue like” models can be used for in vitro tissue engineering applications like preliminary evaluation of the toxicity of drugs and chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号