首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the microsomal fraction of Candida tropicalis cells, two distinct monooxygenases were detected, depending on the growth conditions. The distinction of the two monooxygenases was evident from: (i) the absorption maxima in the reduced CO difference spectra of the terminal oxidases (cytochromes P-450 and P-448); (ii) the contents of the monooxygenase components (cytochromes P-450/P-448, NADPH-cytochrome c (P-450) reductase, and cytochrome b5) and (iii) the catalytic activity of the complete system (aliphatic hydroxylation and N-demethylation activity). The occurrence of the respective monooxygenases could be related to the carbon source (n-alkanes or glucose). Oxygen limitation led to a significant increase of cytochrome P-450/P-448 content, independent of the carbon source utilized by the cells. An improved method for the isolation of microsomes enabled us to demonstrate the presence of cytochrome P-448 in glucose-grown cells.  相似文献   

2.
Bacterial cytochromes P-450   总被引:9,自引:2,他引:7  
The cytochromes P-450 (P-450s) constitute an extremely large family ('superfamily') of haemoproteins that catalyse the oxidation of a wide range of physiological and non-physiological compounds. A remarkable feature of the P-450s is the manipulation of the same basic structure and chemistry to achieve an enormous range of functions in organisms as diverse as bacteria and man. Indeed, the P-450s have been described as ‘the most versatile biological catalyst known’. Much research is focussed on mammalian P-450s, with their roles in such processes as steroid transformations and the metabolism of carcinogens and other xenobiotics. However, our knowledge of the structure and function of the P-450s has been advanced by analysis of a limited number of its bacterial members, primarily P-450cam from Pseudomonas putida. Four P-450 structures have been solved to date, all of which are from bacterial sources. The aim of this review is to assess current knowledge of the many bacterial P-450s, with emphasis on their diverse biological roles and on the advances in our knowledge of this extremely important enzyme class, which have been made feasible through their study.  相似文献   

3.
The aim of this study was to determine the effects of ionic strength and pH on the different pathways of testosterone oxidation catalyzed by rat liver microsomes. The catalytic activity of cytochromes P-450a (IIA1), P-450b (IIB1), P-450h (IIC11) and P-450p (IIIA1) was measured in liver microsomes from mature male rats and phenobarbital-treated rats as testosterone 7 alpha-, 16 beta-, 2 alpha- and 6 beta-hydroxylase activity, respectively. An increase in the concentration of potassium phosphate (from 25 to 250 mM) caused a marked decrease in the catalytic activity of cytochromes P-450a (to 8%), P-450b (to 22%) and P-450h (to 23%), but caused a pronounced increase in the catalytic activity of cytochrome P-450p (up to 4.2-fold). These effects were attributed to changes in ionic strength, because similar but less pronounced effects were observed with Tris-HCl (which has approximately 1/3 the ionic strength of phosphate buffer at pH 7.4). Testosterone oxidation by microsomal cytochromes P-450a, P-450b, P-450h and P-450p was also differentially affected by pH (over the range 6.8-8.0). The pH optima ranged from 7.1 (for P-450a and P-450h) to 8.0 (for P-450p), with an intermediate value of 7.4 for cytochrome P-450b. Increasing the pH from 6.8 to 8.0 unexpectedly altered the relative amounts of the 3 major metabolites produced by cytochrome P-450h. The decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h that accompanied an increase in ionic strength or pH could be duplicated in reconstitution systems containing purified P-450a, P-450b or P-450h, equimolar amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. This result indicated that the decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h was a direct effect of ionic strength and pH on these enzymes, rather than a secondary effect related to the increase in testosterone oxidation by cytochrome P-450p. Similar studies with purified cytochrome P-450p were complicated by the atypical conditions needed to reconstitute this enzyme. However, studies on the conversion of digitoxin to digitoxigenin bisdigitoxoside by liver microsomes, which is catalyzed specifically by cytochrome P-450p, provided indirect evidence that the increase in catalytic activity of cytochrome P-450p was also a direct effect of ionic strength and pH on this enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The structural features which determine interaction of safrole and related methylenedioxyphenyl compounds with cytochromes P-450 or P-448, and determine the induction of these two classes of the cytochrome, have been studied. All methylenedioxyphenyl compounds studied interact with both cytochromes P-450 and P-448 eliciting type I spectral changes and it has been found that the allyl 4-substituent is important in these interactions. Methylenedioxyphenyl compounds with an oxidised allyl 4-substituent exhibited higher affinity for cytochrome P-448 while those possessing an intact allyl or methylvinyl group generally showed higher affinity for cytochrome P-450. Compounds possessing intact allyl and methylenedioxyphenyl groups (safrole, isosafrole and myristicine) were the most potent inducers of cytochromes P-450 and P-448; compounds containing an intact allyl group only (estragole, allybenzene and eugenol methyl ether) or an oxidized allyl group and an intact methylenedioxyphenyl group (epoxysafrole) were inducers of P-448 only.  相似文献   

5.
Cytochrome P-450 is the terminal oxidase of an electron transport system that is responsible for the oxidative metabolism of a large variety of endogenous and exogenous compounds. This broad substrate selectivity is caused by multiple isozymes of cytochrome P-450 and the wide substrate selectivity of many of these isozymes. We have isolated 11 isozymes of cytochrome P-450 from the livers of rats (cytochromes P-450a-P-450k). We have found both polyclonal and monoclonal antibodies increasingly useful to distinguish among these isozymes and to quantitate enzyme levels in liver microsomal preparations where as many as 15 or more cytochrome P-450 isozymes are present. Several of these isozymes show considerable immunochemical relatedness to each other, and operationally they can be grouped into families of immunochemically related isozymes that include cytochromes P-450b and P-450e in one family, cytochromes P-450c and P-450d in another, and cytochromes P-450f-P-450i, and P-450k in a third family. Immunoquantitation of some of these isozymes has revealed dramatic increases of over 50-fold in the levels of certain of these isozymes when exogenous compounds are administered to rats.  相似文献   

6.
Inhalation of toluene vapour of 2000 ppm increased the activities of aniline hydroxylase, aminopyrine N-demethylase, aryl hydrocarbon hydroxylase and NADPH-cytochrome c reductase and the concentrations of cytochromes P-450 and b5 in liver microsomes of adult male rats after an exposure period of 1 day or less. Repeated treatments, 8 h daily for 1-16 days, had only a slight further effect. In lung microsomes, the activities of monooxygenases and the concentration of cytochrome P-450 decreased after 6-24 h toluene exposure, but those of cytochrome b5 and NADPH-cytochrome c reductase did not change. In kidney microsomes the changes were mostly insignificant. After discontinuation of exposure the activities of enzymes and the concentrations of cytochromes returned to the control level in 1-4 days. The results obtained resemble the time-courses for the induction of monooxygenases by other inducers. The tissue differences suggest the unequal distribution of various cytochrome P-450 forms and their individual responsiveness to induction in liver, kidneys and lungs.  相似文献   

7.
The polychlorinated biphenyls mixture, Aroclor 1254, generally considered a powerful inducer of rat hepatic and pulmonary microsomal monooxygenases, caused a 70% decrease in ethylmorphine N-demethylase activity, a 31% decrease in benzo(a)pyrene hydroxylase activity, and a 42% decrease in cytochrome P-450 content in rabbit lung microsomes. When pulmonary cytochrome P-450 was solubilized and subjected to column chromatography, the elution profiles of the two forms of the hemeprotein showed a marked decrease in cytochrome P-450I in treated rabbits, with no significant alteration in cytochrome P-450II content. These data were confirmed by subjecting the two cytochromes to gel electrophoresis and staining the electrophoretic bands for protein and heme-associated peroxidase activity. Cytochromes P-450I and P-450II isolated from Aroclor 1254-treated rabbits showed differences in spectral properties as well as in their stabilities. The CO difference spectral determinations showed absorbance maxima at 452 and 450 nm for cytochromes P-450I and P-450II, respectively. At room temperature, cytochrome P-450II was much more stable than P-450I. The present studies provide evidence not only for species differences in the biological actions of the polychlorinated biphenyls but also demonstrate differential effects of the environmental pollutant on the two major forms of cytochrome P-450 and associated enzymic activities in rabbit lungs.  相似文献   

8.
The cytochromes P-450 are an immensely important superfamily of heme-containing enzymes. They catalyze the monooxygenation of an enormous range of substrates. In bacteria, cytochromes P-450 are known to catalyze the hydroxylation of environmentally significant substrates such as camphor, phenolic compounds and many herbicides. In eukaryotes, these enzymes perform key roles in the synthesis and interconversion of steroids, while in mammals hepatic cytochromes P-450 are vital for the detoxification of many drugs. As such, the cytochromes P-450 are of considerable interest in medicine and biotechnology and are obvious targets for protein engineering. The purpose of this article is to illustrate the ways in which protein engineering has been used to investigate and modify the properties of cytochromes P-450. Illustrative examples include: the manipulation of substrate selectivity and regiospecificity, the alteration of membrane binding properties, and probing the route of electron transfer.  相似文献   

9.
Compounds that are known to increase the hepatic microsomal cytochrome P-450 dependent monooxygenases were administered to adult female rats, alone or in combination, to determine whether their effects on certain substrate oxidations were additive. 3-Methylcholanthrene (3-MC) and pregnenolone-16 alpha-carbonitrile (PCN), known to induce different forms of cytochrome P-450, when administered together increased benzo[a]pyrene oxidation to the same level as observed following 3-MC treatment alone. Phenobarbital (Pb) and PCN when administered concomitantly increased benzo[a]pyrene, amino-pyrine, and ethylmorphine metabolism to the same extent as seen following PCN administration alone. Both compounds are known to induce different forms of cytochrome P-450. Nonadditive effects were also observed with Pb and spironolactone, as well as with Pb and trans-stilbene oxide. Treatment of adult male rats with either PCN or 3-MC resulted in significantly smaller increases in benzo[a]pyrene oxidation than observed in adult female rats. These results suggest that oxidative metabolism in hepatic microsomes is not the sum of activities of a number of cytochrome P-450s, but may represent the activity of a single predominant hemeprotein. In addition, it appears that the oxidation of substrate by a particular cytochrome P-450, in intact microsomes, is greatly influenced by the presence of another form.  相似文献   

10.
X X Ding  M J Coon 《Biochemistry》1988,27(22):8330-8337
Two forms of cytochrome P-450, designated P-450NMa and P-450NMb, were purified to electrophoretic homogeneity from rabbit nasal microsomes. The purified cytochromes, which contained 14-16 nmol of P-450/mg of protein, exhibited apparent monomeric molecular weights of 49,500 and 51,000, respectively. As indicated by several criteria, including the amino acid composition, absorption spectra, and peptide maps, the two nasal forms of P-450 are distinct from each other. Furthermore, as judged by the NH2-terminal amino acid sequences, they are distinct from all other P-450 cytochromes described to date. In the ferric form, P-450NMa is in the low-spin state, whereas P-450NMb is predominantly in the high-spin state. When reconstituted with NADPH-cytochrome P-450 reductase and phospholipid, P-450NMa is very active in the oxidation of ethanol as well as several nasal procarcinogens, including the N-deethylation of N-nitrosodiethylamine, the O-deethylation of phenacetin, and the N-demethylation of hexamethyl-phosphoramide. P-450NMb also metabolizes these substrates, but at lower rates. Both nasal forms are also active with testosterone, with P-450NMa oxidizing the substrate in the 17-position to give androstenedione and P-450NMb catalyzing hydroxylation in the 15 alpha-, 16 alpha-, and 19-positions. The two cytochromes represent the major portion of the total P-450 in nasal microsomes, but the corresponding forms could not be detected in hepatic microsomes.  相似文献   

11.
The metabolism of oestradiol and 17 alpha-ethinyloestradiol to their 2-hydroxy derivatives is an important determinant in their biological effects. In this work, we have investigated which rat or human cytochrome P-450 isoenzymes are involved in catalysing these reactions. Oestradiol 2-hydroxylation was catalysed by a wide variety of rat cytochrome P-450s from gene families P450IA, P450IIB, P450IIC and P450IIIA. Interestingly, 17 alpha-ethinyloestradiol, which only differs structurally from oestradiol at a position distant from the site of oxidation, was metabolized predominantly by members of the P450IIC gene subfamily. In order to establish which enzymes are responsible for the oxidation of these substrates in man, antibodies to rat liver cytochrome P-450 isoenzymes were used to inhibit these reactions in a panel of human liver microsomal fractions. Also, possible correlations between the proteins recognized by the antibodies and the 2-hydroxylation rate were determined. These experiments provide evidence that 2-hydroxylation of 17 alpha-ethinyloestradiol in man is catalysed by cytochromes from the P450IIC, P450IIE and P450IIIA gene families. In contrast, the major proteins involved in oestradiol metabolism are from the P450IA gene family, although members of the P450IIC and P450IIE gene families may also play a role. These data demonstrate that the differences in the capacity of rat P-450s to metabolize these substrates are also present in the comparable enzymes involved in man, and that a variety of factors will determine the rate of disposition of these compounds in man.  相似文献   

12.
Summary The inducibility of cytochrome P-450 in Acinetobacter calcoaceticus by some compounds known as typical inducers of hepatic cytochromes P-450 was investigated. Besides biphenyl also indene and phenanthrene are inducers, whereas compounds of the so-called phenobarbital type are not. Biphenyl appears to be the most effective inducer with regard to the yield of cytochrome P-450/mg of cell protein. By addition of the compounds in the vapour phase an induction of the protein by naphthalene could be demonstrated. The results are indicative of the existence of bacterial cytochromes P-450 that resemble hepatic cytochromes.  相似文献   

13.
The potential inducibility of the lanosterol 14 alpha-demethylase (P-45014DM) from Saccharomyces cerevisiae Y222 by xenobiotics was investigated. This enzyme and NADPH-cytochrome P-450 reductase were unaffected by a number of compounds known to induce mammalian and some yeast cytochrome P-450 monooxygenases. Furthermore, dibutyryl cyclic AMP did not affect P-45014DM or P-450 reductase levels, while growth at 37 degrees C resulted in a slight decrease. P-45014DM was found to be specific for lanosterol and did not metabolize a number of P-450 substrates including benzo[a]pyrene.  相似文献   

14.
14 microsomal cytochromes P-450 were purified from the liver of untreated and phenobarbital- or 3-methylcholanthrene-treated male rats. Following solubilization of microsomes with sodium cholate, poly(ethylene glycol) fractionation and aminohexyl-Sepharose 4B chromatography, cytochromes P-450 were purified by high-performance liquid chromatography (HPLC), using a preparative DEAE-anion-exchange column. The pass-through fraction was further purified by HPLC using a cation-exchange column. Other fractions eluted on preparative DEAE-HPLC were further applied onto an HPLC using a DEAE-column. Five kinds (P-450UT-2-6), four kinds (P-450PB-1,2,4 and 5) and five kinds (P-450MC-1-5) of cytochromes P-450 were purified from untreated rats or rats treated with phenobarbital or 3-methylcholanthrene, respectively. HPLC profiles of tryptic peptides of cytochromes P-450UT-2 and P-450MC-2 were identical and the other profiles obtained from seven purified cytochromes P-450 were distinct from each other. Amino-terminal sequences of eight forms of cytochrome P-450 (UT-2, UT-5, PB-1, PB-2, PB-4, PB-5, MC-1 and MC-5) were distinct except for cytochromes P-450PB-4 and P-450PB-5.  相似文献   

15.
Previously, we described two olfactory-specific cytochromes P-450: rat cytochrome P-450olf1 (IIG1), identified by cDNA cloning, and bovine cytochrome P-450olf2 (IIA), identified by peptide microsequencing of a transmembranal polypeptide (p52). Here we describe the preparation of polyclonal antisera against peptide sequences of these proteins and their use in the immunolocalization of cytochromes P-450olf1 and P-450olf2 in rat olfactory mucosa. Immunoreactivities related to both enzymes are found in the subepithelial Bowman's glands of olfactory mucosa. Practically no immunoreactivity was found in other rat tissues, including liver, lung, kidney and respiratory mucosa. In addition, double-labeling experiments demonstrated that cytochromes P-450olf1 and P-450olf2 are present in the same population of Bowman's glands. The olfactory-specific localization of cytochromes P-450olf1 and P-450olf2 is consistent with a role for these enzymes in the modification or clearance of odorants from the chemosensory tissue.  相似文献   

16.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

17.
The virtually universal family of P-450 isozymes contribute to the regulation of cell growth by modulating the levels of steroids and other lipid messengers for cytoplasmic and nuclear processes, including gene expression. In microsomes from rat liver cells, the concentration ( approximately 1 nmole/mg protein) of cytochromes P-450 approximates that of intracellular binding sites (K(d) 1.0-50 microM) for histamine. The potencies of certain therapeutic drugs to inhibit catalytic activity of, and histamine binding to, cytochromes P-450 in vitro were previously shown by us to be predictive of relative propensities to modulate tumor growth in rodents. Also, we demonstrated that growth-regulating polyamines potently interact with histamine at P-450. We now show that several classes of steroid hormones, antiestrogens, and antiandrogens, as well as various arylalkylamine drugs, all potently inhibit (3)H-histamine binding to cytochrome P-450 (K(i) values: testosterone 0.28 microM, progesterone 0.56 microM, flutamide 1.7 microM, tamoxifen 9.0 microM). Furthermore, all the various hormone and drug ligands are mutually inhibitory in their binding to cytochrome P-450; e.g., K(i) values of androstenedione and progesterone, to inhibit imipramine binding to P-450 (determined by spectral analysis), are 11 nM and 26 nM, respectively. The K(i) value of imiprimine to inhibit binding of androstenedione to P-450 is 3.5 microM. We estimate the total P-450 content in microsomes to be greater in male than in female rats and correlated with the number of binding sites for histamine, but not for steroids and drugs that appear to be more selective for P-450 isozymes. Thus, for at least some isozymes, the homeostatic role of the monooxygenases may be governed by histamine, modulated by endogenous ligands, and perturbed by many foreign molecules.  相似文献   

18.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

19.
Cytochromes P-450f, P-450g, P-450h, and P-450i are four hepatic microsomal hemoproteins that have been purified from adult rats. Whereas cytochromes P-450g and P-450h appear to be male-specific hemoproteins, cytochrome P-450i is apparently a female-specific enzyme purified from untreated adult female rats. Cytochrome P-450f has been purified from adult male and female rats with equivalent recoveries. Amino-terminal sequence analyses of the first 15-20 amino acid residues of each of these cytochromes P-450 has been accomplished in the current investigation. Each protein possesses a hydrophobic leader sequence consisting of 65-87% hydrophobic amino acids, and only one charged amino acid (Asp) in the amino-terminal region. Although differences in the amino-terminal sequences of cytochromes P-450f, P-450g, P-450h, and P-450i are identified, these hemoproteins all begin with Met-Asp, and marked structural homology is observed among certain of these enzymes. Cytochromes P-450g and P-450h, two male-specific proteins, have 11-12/15 identical residues with cytochrome P-450i, a female-specific isozyme. Cytochromes P-450f and P-450h have 16/20 identical amino-terminal residues. Only limited sequence homology is observed between the amino-terminal sequences of cytochromes P-450f-i compared to rat liver cytochromes P-450a-e. The results demonstrate that cytochromes P-450f, P-450g, P-450h, and P-450i are isozymic to each other and five additional rat hepatic microsomal cytochrome P-450 isozymes (P-450a-e).  相似文献   

20.
The secondary structure of rabbit liver microsomal cytochrome P-450 LM2, rat liver microsomal cytochromes P-450b and P-450e (phenobarbital-inducible), and rat liver microsomal cytochromes P-450c, P-450d (3-methylcholanthrene-inducible) was predicted by a combination of methods (i) identifying the transmembrane parts of integral membrane proteins, and (ii) statistically predicting the secondary structure of globular proteins. The results are similar for all phenobarbital-inducible enzymes and make it possible to construct two structural models with seven or four transmembrane alpha-helices. The cytochromes of the second group obviously form a second structural family with four membrane-spanning alpha-helices. In both cases, a large ectodomain with several consecutive alpha-helices, which may provide the heme-binding pocket, is exposed out of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号