首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endocytosis modulates the Notch signaling pathway in both the signaling and receiving cells. One recent hypothesis is that endocytosis of the ligand Delta by the signaling cells is essential for Notch activation in the receiving cells. Here, we present evidence in strong support of this model. We show that in the developing Drosophila eye Fat facets (Faf), a deubiquitinating enzyme, and its substrate Liquid facets (Lqf), an endocytic epsin, promote Delta internalization and Delta signaling in the signaling cells. We demonstrate that while Lqf is necessary for three different Notch/Delta signaling events at the morphogenetic furrow, Faf is essential only for one: Delta signaling by photoreceptor precluster cells, which prevents recruitment of ectopic neurons. In addition, we show that the ubiquitin-ligase Neuralized (Neur), which ubiquitinates Delta, functions in the signaling cells with Faf and Lqf. The results presented bolster one model for Neur function in which Neur enhances Delta signaling by stimulating Delta internalization in the signaling cells. We propose that Faf plays a role similar to that of Neur in the Delta signaling cells. By deubiquitinating Lqf, which enhances the efficiency of Delta internalization, Faf stimulates Delta signaling.  相似文献   

2.
3.
4.
5.
A biological signal is transmitted by interactions between signaling molecules in the cell. To date, there have been extensive studies regarding signaling pathways using numerical simulation of kinetic equations that are based on equations of continuity and Fick’s law. To obtain a mathematical formulation of cell signaling, we propose a stability kinetic model of cell biological signaling of a simple two-parameter model based on the kinetics of the diffusion-limiting step. In the present model, the signaling is regulated by the binding of a cofactor, such as ATP. Non-linearity of the kinetics is given by the diffusion fluctuation in the interaction between signaling molecules, which is different from previous works that hypothesized autocatalytic reactions. Numerical simulations showed the presence of a critical concentration of the cofactor beyond which the cell signaling molecule concentration is altered in a chaos-like oscillation with frequency, which is similar to a discontinuous phase transition in physics. Notably, we found that the frequency is given by the logarithm function of the difference of the outside cofactor concentration from the critical concentration. This implies that the outside alteration of the cofactor concentration is transformed into the oscillatory alteration of cell inner signaling. Further, mathematical stability kinetic analysis predicted a discontinuous dynamic phase transition in the critical state at which the cofactor concentration is equivalent to the critical concentration. In conclusion, the present model illustrates a unique feature of cell signaling, and the stability analysis may provide an analytical framework of the cell signaling system and a novel formulation of biological signaling.  相似文献   

6.
In Drosophila, the secreted BMP-binding protein Short gastrulation (Sog) inhibits signaling by sequestering BMPs from receptors, but enhances signaling by transporting BMPs through tissues. We show that Crossveinless 2 (Cv-2) is also a secreted BMP-binding protein that enhances or inhibits BMP signaling. Unlike Sog, however, Cv-2 does not promote signaling by transporting BMPs. Rather, Cv-2 binds cell surfaces and heparan sulfate proteoglygans and acts over a short range. Cv-2 binds the type I BMP receptor Thickveins (Tkv), and we demonstrate how the exchange of BMPs between Cv-2 and receptor can produce the observed biphasic response to Cv-2 concentration, where low levels promote and high levels inhibit signaling. Importantly, we show also how the concentration or type of BMP present can determine whether Cv-2 promotes or inhibits signaling. We also find that Cv-2 expression is controlled by BMP signaling, and these combined properties enable Cv-2 to exquisitely tune BMP signaling.  相似文献   

7.
Critical cellular functions, including stem cell maintenance, fate determination, and cellular behavior, are governed by canonical Wnt signaling, an evolutionarily conserved pathway whose intracellular signal is transduced by beta-catentin. Emerging evidence suggests that canonical Wnt signaling influences cellular aging, indicating that increases in Wnt signaling delay age-related deficits.1 However, recent Science papers suggest that Wnt signaling accelerates the onset of aging.2,3 In an attempt to resolve this paradox and clarify how Wnt signaling affects aging, we provide a selective review of research relevant to Wnt signaling and aging.  相似文献   

8.
9.
10.
Wu J  Yang J  Klein PS 《Developmental biology》2005,279(1):220-232
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction.  相似文献   

11.
12.
Sprouty, an essential antagonist of fibroblast growth factor receptor signaling, is induced following fibroblast growth factor receptor activation. The signaling pathways that induce sprouty have been incompletely characterized. However, studies show that MAP kinase signaling stimulates sprouty induction in various cell lines. Here we report that activation of sprouty expression by basic fibroblast growth factor required phospholipase Cgamma (PLCgamma) and calcium-dependent signaling. We showed that the induction of sprouty was inhibited by chelation of intracellular or extracellular calcium and that a fibroblast growth factor receptor deficient for PLCgamma signaling only weakly induced sprouty expression. Additionally, inhibition of PLCgamma with a pharmacological antagonist repressed the induction of sprouty by basic fibroblast growth factor. These findings indicate that calcium-dependent signaling regulates sprouty expression and that PLCgamma is vital for this process. This pathway of sprouty induction may be critical at sites such as limb bud mesenchyme where MAP kinases are inactive.  相似文献   

13.
B‐cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry‐based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor‐proximal signaling components, many of which are co‐regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR‐induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo‐lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC‐mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR‐induced NF‐κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.  相似文献   

14.
The mechanisms that underlie the critical dendritic cell (DC) function in maintainance of peripheral immune tolerance are incompletely understood, although the β-catenin signaling pathway is critical for this role. The molecular details by which β-catenin signaling is regulated in DCs are unknown. Mechanical disruption of murine bone marrow-derived DC (BMDC) clusters activates DCs while maintaining their tolerogenic potential and this activation is associated with β-catenin signaling, providing a useful model with which to explore tolerance-associated β-catenin signaling in DCs. In this report, we demonstrate novel molecular features of the signaling events that control DC activation in response to mechanical stimulation. Non-canonical β-catenin signaling is an essential component of this tolerogenic activation and is modulated by adhesion molecules, including integrins. This unique β-catenin-dependent signaling pathway is constitutively active at low levels, suggesting that mechanical stimulation is not necessarily required for induction of this unique activation program. We additionally find that the immunomodulatory cytokine TGF-β antagonizes β-catenin in DCs, thereby selectively suppressing signaling associated with tolerogenic DC activation while having no impact on LPS-induced, β-catenin-independent immunogenic activation. These findings provide new molecular insight into the regulation of a critical signaling pathway for DC function in peripheral immune tolerance.  相似文献   

15.
16.
17.
B cell exposure to IL-4 alters subsequent BCR signaling such that ERK phosphorylation becomes signalosome-independent; however, the nature of this new, alternate signaling pathway and its relationship to the classical, signalosome-dependent signaling pathway are not known. In this study, we report that the alternate and classical pathways for BCR signaling are differentially affected by rottlerin, and by Go6976 or LY294002, respectively. Furthermore, in B cells lacking protein kinase C (PKC)beta, the classical pathway for BCR signaling is blocked, whereas the alternate pathway is little affected. Conversely, in B cells lacking Lyn, the alternate pathway for BCR signaling is blocked, whereas the classical pathway is little affected. The rottlerin-sensitive element is not PKCdelta, inasmuch as the alternate pathway is not blocked in PKCdelta-deficient B cells. These results indicate that the rottlerin-sensitive, Lyn-dependent alternate pathway, and the classical pathway, for BCR signaling operate in parallel when BCR engagement follows IL-4 exposure.  相似文献   

18.
Rui Y  Xu Z  Xiong B  Cao Y  Lin S  Zhang M  Chan SC  Luo W  Han Y  Lu Z  Ye Z  Zhou HM  Han J  Meng A  Lin SC 《Developmental cell》2007,13(2):268-282
Axin is a scaffold protein that controls multiple important pathways, including the canonical Wnt pathway and JNK signaling. Here we have identified an Axin-interacting protein, Aida, which blocks Axin-mediated JNK activation by disrupting Axin homodimerization. During investigation of in vivo functions of Axin/JNK signaling and aida in development, it was found that Axin, besides ventralizing activity by facilitating beta-catenin degradation, possesses a dorsalizing activity that is mediated by Axin-induced JNK activation. This dorsalizing activity is repressed when aida is overexpressed in zebrafish embryos. Whereas Aida-MO injection leads to dorsalized embryos, JNK-MO and MKK4-MO can ventralize embryos. The anti-dorsalization activity of aida is conferred by its ability to block Axin-mediated JNK activity. We further demonstrate that dorsoventral patterning regulated by Axin/JNK signaling is independent of maternal or zygotic Wnt signaling. We have thus identified a dorsalization pathway that is exerted by Axin/JNK signaling and its inhibitor Aida during vertebrate embryogenesis.  相似文献   

19.
Chondrocyte hypertrophy is an essential process required for endochondral bone formation. Proper regulation of chondrocyte hypertrophy is also required in postnatal cartilage homeostasis. Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression. To understand whether there is a PTHrP-independent role of Ihh signaling in regulating chondrocyte hypertrophy, we have both activated and inactivated Ihh signaling in the absence of PTHrP during endochondral skeletal development. We found that upregulating Ihh signaling in the developing cartilage by treating PTHrP(-/-) limb explants with sonic hedgehog (Shh) protein in vitro, or overexpressing Ihh in the cartilage of PTHrP(-/-) embryos or inactivating patched 1 (Ptch1), a negative regulator of hedgehog (Hh) signaling, accelerated chondrocyte hypertrophy in the PTHrP(-/-) embryos. Conversely, when Hh signaling was blocked by cyclopamine or by removing Smoothened (Smo), a positive regulator of Hh signaling, chondrocyte hypertrophy was delayed in the PTHrP(-/-) embryo. Furthermore, we show that upregulated Hh signaling in the postnatal cartilage led to accelerated chondrocyte hypertrophy during secondary ossification, which in turn caused reduction of joint cartilage. Our results revealed a novel role of Ihh signaling in promoting chondrocyte hypertrophy independently of PTHrP, which is particularly important in postnatal cartilage development and homeostasis. In addition, we found that bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling in the cartilage may both mediate the effect of upregulated Ihh signaling in promoting chondrocyte hypertrophy.  相似文献   

20.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号